Show simple item record

dc.creatorRíos Ibáñez, Vicente
dc.date.accessioned2020-12-23T14:12:52Z
dc.date.available2020-12-23T14:12:52Z
dc.date.created2010-12-01
dc.date.issued2010-12-01
dc.identifier.citationÁlvaro Solera Ramírez (2005) Pronostico de la Inflación en Costa Rica: Una estimación con redes neuronales artificiales
dc.identifier.citationEmi Nakamura (2005). “Inflation Forecasting using a Neural Network”
dc.identifier.citationFranses and Van Dijk (2000). “Non linear time series models in empirical finance”
dc.identifier.citationGomez, Victor & Maravall, Agustin & Pena, Daniel, (1998). "Missing observations in ARIMA models: Skipping approach versus additive outlier approach"
dc.identifier.citationHagan and Menhaj, (1994); “Training Feed Forward Networks with the Marquardt Algorithm”
dc.identifier.citationHaider, Adnan and Hanif, Muhammad Nadeem (2009). “Inflation forecasting in Pakistan using Artificial Networks”
dc.identifier.citationHaykin, S., 1998. Neural Networks - A Comprehensive Foundation
dc.identifier.citationHornik, K., M., Stinchcombe, and H., White, (1989). “Multilayer Feed Forward Networks are Universal Approximators”
dc.identifier.citationKenny and Quinn (1998). “Forecasting Irish Inflation Using ARIMA Models”
dc.identifier.citationKisi, Ö., 2007. “Streamflow Forecasting using Different Artificial Neural Network Algorithms
dc.identifier.citationManfred Esquive (2009) “Performance of ANN in forecasting Costa Rica Inflation”
dc.identifier.citationPaul McNelis & Peter McAdam, (2004). "Forecasting inflation with thick models and neural networks,"
dc.identifier.citationRecep Düzgün (2010) “Generalized Regression Neural Networks for Inflation Forecasting”
dc.identifier.citationSerju, P., 2002. “Monetary Conditions & Core Inflation: An Application of Neural Networks”
dc.identifier.citationStock, J. H., and M. W., Watson, (1999). “A Comparison of Linear and Non-Linear Univariate Models for Forecasting Macroeconomic Time Series”
dc.identifier.citationTkacz, G., 2001. “Neural Network Forecasting of Canadian GDP Growth”
dc.identifier.urihttp://repositorio.bcp.gov.py/handle/123456789/120
dc.description.abstractIn this research I investigate the alternative methodology of training artificial neural networks models with the early stopping procedure and I analyze their outcomes in terms of accuracy when forecasting monthly Paraguayan inflation time series. The results show that despite of neural network modelling being a competitive alternative to classical linear modelling it doesn‟t improve the overall forecast performance of best ARMA specifications selected through common in-sample estimation procedures, in a set of four control subsamples of 24 months each, ranging from 2002:04 to 2010:04. However, it is also a remarkable feature of all the checks performed in this research, that artificial neural network models outperform ARMA specifications in 24-steps-ahead horizon forecasts in all the subsamples of control.
dc.format.extent41 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherBCP
dc.relation.ispartofDocumentos de Trabajo
dc.relation.ispartofseriesDocumento de Trabajo
dc.relation.isversionofDocumento de Trabajo; N° 12
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectINFLACIÓN
dc.titleForecasting inflation with ANN models
dc.title.alternativePronóstico de la inflación con modelos ANN
dc.typeWorking Paper
dc.subject.jelE00
dc.subject.jelspaE00
dc.subject.keywordINFLATION
dc.rights.accessRightsOpen Access
dc.type.spaDocumento de Trabajo
dc.type.hasversionPublished Version
dc.rights.ccCC0 1.0 Universal
dc.rights.spaAcceso abierto


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit