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Abstract 

In this research I investigate the alternative methodology of training artificial neural 

networks models with the early stopping procedure and I analyze their outcomes in terms of 

accuracy when forecasting monthly Paraguayan inflation time series. The results show that 

despite of neural network modelling being a competitive alternative to classical linear 

modelling it doesn‟t improve the overall forecast performance of best ARMA specifications 

selected through common in-sample estimation procedures, in a set of four control 

subsamples of 24 months each, ranging from 2002:04 to 2010:04. However, it is also a 

remarkable feature of all the checks performed in this research, that artificial neural 

network models outperform ARMA specifications in 24-steps-ahead horizon forecasts in all 

the subsamples of control. 
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1. Introduction 

 

ANN modelling has gained attention in past years as an attractive technique for estimation and 

forecasting in economics.  The main advantage of the artificial neural networks models is that 

they are free from the assumption of linearity that is commonly imposed in order to make the 

traditional methods tractable. Moreover, as Hornik and M-Stinchcombe and H.White (1989) 

Franses and Van Dijk (2000) show, neural networks are universal approximators and  they can 

fit arbitrarily well any complex function by increasing the number of layers and neurons of the 

network. 

 

Recent literature in ANN models show the great capability of ANN models in identifying 

behavior patterns, especially, non-linear ones, which allows the detection of non-linear dynamics 

and perform high accuracy forecasts.  Nakamura (2005) shows that ANN methods outperform 

results obtained from linear autoregressive models. Moreover, Paul McNelis and Peter 

McAdamn (2004) show that non-linear Phillip curve specifications based on thick NN models 

can be competitive with the linear specification and that they perform better in periods of 

structural change. NN modeling also has the capability, as it has been shown in Tckaz (1999), to 

recognize and to model non-typical observations such as outlier behaviors or changes in the 

level, showing notorious advantages from what linear models can do in uncertain environments.  

 

This document investigates alternative methods of forecasting and evaluates their performance in 

order to improve and complement inflation forecast exercises of Paraguay‟s Central Bank. The 

alternative approach purposed here constitutes a powerful alternative in regression standard 

techniques to model and forecast time series. In this research, I apply neural network-based 

trained models to: i) perform connections between the past and present values of the inflation 

time series and ii) to extract the structures and relations driving the information system 

associated to inflation. 

 

In this research I proceed in the following way: 
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I first estimate different Autoregressive Moving Average (ARMA) models for different 

subsamples and I determine the most competitive specifications according to different 

information and goodness of fit criteria such as the Akaike‟s Information Criteria(AIC), the 

Bayesian Information Criteria(BIC), maximum likelihood (ML) and the minimum Root Mean 

Squared Error (RMSE). 

 

Second, for each subsample I built and train a neural network to learn about each partition of the 

data  with the early stopping procedure documented by Nakamura (2005) that will compete with 

the best ARMA(p,q) model specifications. I run a double loop in the MATLAB programming 

environment for lags and layers so that the training takes place accounting for all possible 

network configurations minimizing the in-sample RMSE for different configurations of lags and 

layers. 

 

Third, I compute the out of sample root mean squared forecast error (RMSFE) for each 

subsample of interest for both, the ARMA(p,q) models specifications  and the ANNs one. 

Finally, I analyze the predictive accuracy in each of them and conclude whether ANN models 

are competitive with ARMA(p,q) models or not.  

 

My main finding is that Artificial Neural Networks (ANN) trained to forecast monthly inflation 

rate series in Paraguay with the early stopping procedure and with the learning process based on 

Levenger-Marquardt algorithm are a) competitive with ARMA(p,q) models but b) do not 

outperform univariate ARMA(P,Q) models for the all set of check subsamples analyzed 

according to the RMSFE measure. The later, for the case of Paraguay‟s inflationary rate process 

contradicts the intuition of superiority provided by in Tckaz (1999),  Paul McNelis and Peter 

McAdamn (2004) Nakamura (2005), Haider and Hanif (2009), Manfred Esquivel (2009)  among 

others, at least, when using macroeconomic Paraguayan data. 

 

2. Artificial Neural Networks Architecture 

ANN consists of an interconnected group of artificial neurons that processes information using a 

connectionist approach. In most cases an ANN is an adaptative system that changes its structure 
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based on external or internal information that flows through the network during the learning 

phase. It is basically a non-linear mathematical model or computational model that is inspired by 

the structure and functional aspects of biological neural networks of the kind of equation (1) 

 

(1)      3 2 1

, 1 3,2 2,1 1,1 1 2 3,...., ...L L

L L Ly a f LW f LW f LW f IW p b b b b      for L=1...H 

Where y is the output, f is the transfer function, LWi,j is the layer weight, bi is the bias and p is 

the matrix of inputs (for a more detailed explanation below) and H is the number of hidden 

layers. In this section, I am not focusing on explaining the ANN modeling theory in depth, 

however, I set up the basic points that will help to understand and clarify the set up of the ANN 

model I use to forecast inflation. For a detailed explanation in ANN theory and design see 

Haykin,S. (1998). 

 

Neurons 

 

The artificial networks are similar to the biological networks in the sense that functions are 

performed collectively and in parallel by the units (neurons). The word network in the term ANN 

refers to the inter-connections between the neurons in the different layers of each system being 

the fundamental building block for neural networks the single-input neuron, such as the one in 

the example that appears below: 

 

Figure 1: Simple Neuron  

 
Source: MATLAB NN Toolbox 7.0 User’s guide 

 

The neurons operate in the following way: 
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1. First, the scalar input p is multiplied by the scalar weight w to form the product wp 

which is also a scalar.  

2. Second the weighted input wp is added to the scalar bias b to form the net input n.   

Bias can be seen as a shifting function f to the left by an amount b.  

3. Finally, the net input n is passed through the transfer function f, which produces the 

scalar output a.  

 

The names given to these three processes are: the weight function, the net input function and the 

transfer function. Note that w and b are both adjustable scalar parameters of the neuron. The 

central idea of neural networks is that such parameters can be adjusted so that the network 

exhibits some desired interesting behaviour. In words of Nakamura (2005):  “One can think 

about these parameters as the equivalent of estimated coefficients in linear regression models.”  

 

Transfer functions 

 

Typical transfer functions used in Neural Network Architecture to generate the output f are the 

tan-sigmoid transfer function, the log-sigmoid transfer function and the lineal transfer function. 

They differ in the tasks of application. Sigmoid output neurons are often used for patter 

recognition problems, while linear output neurons are used for function fitting problems. 

Commonly, tansigmoid functions are used as the input processing function and purely linear 

functions as the output function but modellers and researchers usually test the robustness of the 

results by using the network under different functional forms. 

 

Feed-forward Networks Architectures 

 

Feed forward networks often have one or more hidden layers of sigmoid neurons followed by an 

output layer of linear neurons. Multiple layers of neurons with nonlinear transfer functions allow 

the network to learn nonlinear relationships between input and output vectors. The linear output 

layer in the network is often used for function fitting and forecast. The computational advantage 

of ANN models is that one can pool tones of neurons and use them to work in parallel to solve 

specific tasks. Parallel computing is a form of computation in which many calculations are 

http://en.wikipedia.org/wiki/Computing
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carried out simultaneously, operating on the principle that large problems can often be divided 

into smaller ones, which are then solved concurrently ("in parallel"). Two or more neurons like 

the one shown earlier can be combined in a layer and a particular network that could also contain 

one or more such layers of neurons. A one-layer network with R input elements and S neurons in 

the layer looks like the Figure 2 

 

Figure 2: One layer neural system 

 

 Source: MATLAB NN Toolbox 7.0 User’s guide 

 The input vector elements enter the network through the weight matrix W in the following 

way: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

....

.... ..... .... ....

...

R

R

S S S R

w w w

w w w
W

w w w

 
 
 
 
  
 

 

 

Note that the row indices on the elements of matrix W indicate the destination neuron of the 

weight, and the column indices indicate which source is the input for that weight. Thus, the 

indices in w1,2 say that the strength of the signal from the second input element to the first neuron 

is w1,2.  

 

A multilayer feed-forward network is similar to a single-layer one. The main difference is that 

instead of having a hidden layer pass its calculated values to an output layer, it passes them on to 

another hidden layer. Both types of networks are typically implemented by fully connecting each 

http://en.wikipedia.org/wiki/Concurrency_(computer_science)
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layer‟s neurons with the preceding layer‟s neurons. Thus, if Layer A has k neurons and sends its 

information to Layer B, with n neurons, each neuron in Layer A has n connections for its 

calculated output, while each neuron in Layer B has k input connections. 

 

3. ANN Modelling Methodology 

 

ANN modelling methodology is divided in four basic steps. The first one consists in pre-

processing and scaling the data since it helps to increase the network‟s efficiency in computing, 

Haiden and Hanif (2009). The second one consists in dividing the data in different subsets as in 

Nakamura (2005). The first subset is usually the training set where the Networks learn. The 

second set is a validation set which is used to implement the early stopping. The third step 

involves the design of an appropriate architecture (lags and layers) and the use of a balanced 

algorithm to make computations on the Jacobian matrix of the objective function of the training 

as in Recep-Duzgun (2010).  The fourth and final step is the ANN model selection. 

 

 

Data pre-processing and scaling 

 

The first steps in ANN modelling are pre-processing and scaling the data. Transformation, 

normalization and data smoothing are three common ways of pre-processing data. 

Transformation and normalization makes the statistical distribution of each input and output data 

roughly uniform. The values are scaled to match the range that the input neurons use. Data 

normalization methods, which include simple linear scaling and statistical measures of central 

tendency and variance, remove outliers and spread out the distribution of the data. Data 

smoothing filters out noise in the data. 

 

The reason why pre-processing the data is useful is that it makes more efficient the neural 

network behaviour. For example, in multilayer networks sigmoid transfer functions are generally 

used in hidden layers. The bad news is that these functions become saturated when the input is 

greater than three. (i.e, exp(-3) 0.05)  and if this happens at the beginning of the training 
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process problems of speed in computing or of the nature as the ones documented by Judd (1998) 

can arise. Thus, a solution is to normalize the inputs before applying them to the network.  I 

apply the normalization to both, the input and the output vector using the following linear scaling 

function: 

 

(1) 
 *

min
2 1

max( ) min( )

kt k

kt

k k

x x
x

x x


 


 

 

The results of applying this scaling function ensures the data will fall in the interval [-1,1]. 

The inflation series derived from this normalization exhibits an almost chaotic pattern and 

which can be seen in Graph 1.  

 

Graph 1: Inflation normalized series 

 
Source: Own elaboration with BCP data 

 

Dividing the data 

 

The second step when training multilayer networks consists in dividing the data into two subsets, 

training and validation set. The first subset is the training set, which is used for computing the 

gradient and updating the network weight and biases. In this research I adjust the quantity of 

observations that each network reads from the training set to the 80% of available data. 
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The error on the validation set is monitored during the training process. The validation error 

normally decreases during the initial phases of the training process as it does the training set 

error.  However, when the network begins to over-fit the data, the error on the validation set 

typically begins to rise and the network weights and biases are saved at the minimum of the 

validation set error.  This practice is also known as “early-stopping” and its benefits in avoiding 

over-parameterization are well explained in Nakamura (2005).   

 

For practicing early stopping, the researcher has to be careful not to use algorithms that converge 

too rapidly to the goal of the training. If one is using a fast algorithm like the LM, the training 

parameters have to be set such that the convergence is relatively slow. In this sense, LM 

algorithm has been documented by the literature to be one of the most balanced ones in terms of 

computational burden and accuracy of the results (see for example the NN MATLAB toolbox for 

a great analysis between the time-accuracy trade-off that researchers face when choosing 

algorithms for the learning process).  

 

Learning 

 

Learning in ANN models consists in updating the connections between neurons and layers. The 

flow of information in a network can be represented in a general form as: 

 

(2) Wa=b 

Where W is an n x k matrix. The learning process implies modifications of each wji in W. A 

similar mathematical analogy applies to multilayer feed-forward networks, but in that case, there 

is a W for every layer and „‟b‟‟ is used as the value for „‟a‟‟ when moving to subsequent layers. 

Several algorithms can be used to compute the gradient performance function to determine how 

to adjust the weights to optimize performance. 

 

The simplest implementation of back-propagation (or gradient descent) techniques for learning, 

updates the network weights and biases in the direction in which the performance function 
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decreases most rapidly, the negative of the gradient. The way the matrix of coefficients evolves 

through the learning phase can be characterized by the following equation: 

 

(3) 1k k k kW W B    

In this research I use an algorithm that mutes from Newton‟s method to steepest descent to adjust 

the weights of the matrix W minimizing the RMSE. The feed forward multi layer network 

algorithm that trains my net is the Levenberg-Marcquardt (1946). I use this technique due to that 

it is considered more powerful and faster than the conventional gradient descent technique 

(Hagan and Menhaj, (1994); Kisi (2007)).  It is a high-performance algorithm that can converge 

from ten to one hundred times faster than the algorithms discussed previously. The way the 

algorithm concretely works appears in equation (10) below. If I want to minimize a function f( ) 

with respect the parameter vector  , the Newton‟s method would be: 

(4) 
2 1[ ( )] ( )f f        

The Levenberg-Marquardt algorithm was designed to approach second-order training speed 

without having to compute the Hessian matrix. When the performance function has the form of a 

sum of squares (as is typical in training feedforward networks), then the Hessian matrix can be 

approximated. Let 
2 ( )f   is the Hessian matrix and ( )f   the gradient. Now, assume that

( )f  is the sum of squares functions: 

(5) 
2

1

( ) ( )
N

i

i

f e 


 , then: 

(6) ( ) ( ) ( )Tf J e    and  

 

(7) 
2 ( ) ( ) ( ) ( )Tf J J S      with  

(8) 
2

1

( ) ( ) ( )
N

i i

i

S e e  


  and J  the jacobian matrix.   

The main difference between Gauss-Newton (GN) method and Levenberg-Marquardt(1946)  is 

that it in GN is assumed ( ) 0S    with: 
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(9)  
1( ) [ ( ) ( )] ( ) ( )T TJ J J e        

while Levenberg-Marquardt (1946) modification to the GN method is: 

 

(10) 
1( ) [ ( ) ( ) ] ( ) ( )T TJ J J e        1( ) [ ( ) ( ) ] ( ) ( )T TJ J J e       

.  

If   is big, the algorithm becomes steepest descent and if it is small it becomes Gauss method. 

When µ is large, this becomes gradient descent with a small step size. Newton's method is faster 

and more accurate near an error minimum, so the aim is to shift toward Newton's method as 

quickly as possible. The term  can therefore be controlled to ensure descent even when second-

order terms, which restrict the efficiency of the Gauss-Newton method, are encountered. 

Therefore, Levenberg-Marquardt method uses a search direction that is a cross between the 

Gauss-Newton direction and the steepest descent direction.  

 

Training and early stopping procedure 

 

ANN specification and training involves the specification of the following parameters (as in the 

MATLAB NN Toolbox 7.0): a) the number of hidden layers, b) the maximum lag, c) the training 

set, d) the forecast period, e) the learning rate of the network, f) the learning increment, g) the 

learning decrement, h) the number of training parameters epochs and i) the target RMSE.  Table 

I shows the ANN selection of parameter values to configure the network.   

 

One of the main issues needed to comment is related to the learning rate of the network. Picking 

the learning rate for a nonlinear network is a challenge. As with linear networks, a learning rate 

that is too large leads to unstable learning. If the learning rate is set too high, the algorithm can 

oscillate and become unstable. If the learning rate is too small, the algorithm takes too long to 

converge. It is not practical to determine the optimal setting for the learning rate before training, 

and, in fact, the optimal learning rate changes during the training process, as the algorithm 

moves across the performance surface. The value used for all Network configurations is 0.95.  
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Table 1: Multilayer Feed-Forward Network configuration 

        Parameter     Value 

Hidden layers from 1 to 12 

Max lag from 1 to 12 

Training set  0.8 

Forecast period 24 

Learning rate            0.95 

Learning increment            0.8 

Learning decrement            0.4 

Training parameter epochs            1000 

Target RMSE            0.005 

 

The idea now is to determine the number of layers and lags of the ANN system optimally since 

that will deliver the final configuration of the model to run forecasts. In the early stopping 

approach validation, vectors are used to stop training early if the network performance on the 

validation vectors fails to improve or remains the same for a certain number of epochs in a row 

and test vectors are used as a further check that the network is generalizing well but do not have 

any effect on training.  

 

The procedure goes as follows: First, input and ouput vectors are read into the model, then, after 

randomly selecting a set of parameters (I use the pseudo-random number generator of 

MATLAB), the network processes the inputs and generates a predicted output vector. After that, 

a mean square error (RMSE) is generated by comparing such output vector with the time series 

of actual data through the different sub-divisions of the data as it can be seen in graph xx in NN 

Appendix. 

 

Then the network adjusts the initial set of parameters in the direction of the negative gradient of 

the RMSE, produces a new output vector, calculates a new RMSE, adjust the parameters and so 

on. (in next lines ending criteria in NN training are defined). The adaptive value   is increased 

by   or more concretely 0.8 until the change above results in a reduced performance value.  

The change is then made in the network and mu is decreased by   meaning 0.4. Since I‟m 

using a fast algorithm, I set the training parameters so that the convergence is relatively slow. 

For example, I set mu to a relatively large value, such as 0.95 or 1, and set mu_dec and mu_inc to 
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values close to 1, such as 0.7 and 1.05, respectively. Training occurs according to training 

parameters with the following values: 

 

Table 2: Levenberg and Marquardt Algorithmic learning process parameterization 

Parameter Value 

Max epochs 1000 

MSE 0.005 

Max fail 5 

Min ( )  1,00E-10 
   1 

 *                 0.7 

 * 1.05 

Max * 1,00E+10 

Time (t) Inf 

 

Training stops when any of these conditions occurs: 

 

    1) The maximum number of EPOCHS (repetitions) is reached. 

    2) The maximum amount of time has been exceeded. 

    3) Performance has been minimized to th goal. 

    4) The performance gradient falls below min ( )  . 

    5)  exceeds  Max *. 

    6) Validation performance has increased more than max fail time since the last time it 

decreased (when using validation). 

 

NN selection 

 

The generic model specification I estimate and from which I compute the RMSE reads as: 

 

(11) ( , )t ty F X   

(12)  
1

( , )
Q

t k k t t

k

F X g Z  


    



  

 15 

With  1 1, ,..., , ,....,t t t t mZ X X y y w w  with , 1,...,t jy j p  lags of the dependent variable, 

, 1,...,jw j m  exogenous variables and tanh (u) the transfer function 

(13) 

2

2

1
tanh( )

1

u

u

e
u

e





 

In the learning process of each of the 12 lags x 12 layers configurations of NN I train the 

network until it satisfies one of the former conditions. After that, I use the estimated coefficients 

of the trained network to simulate data corresponding to the validation and test periods and I 

compute the root mean squared error. 

 

For each simulation I store the RMSE and then I compare all of them to select the one that 

performed better, with the lowest RMSE value.  The training process produces the different 

optimal configurations for the different sets as it is shown in Table XI below. 

Table 3: Selected NN Networks 

Subsample of forecast 
Selected Competing 
Networks RMSE 

2002:04-2004:04 (3  ,  5) 0,156 

2004:04-2006:04 (4  ,  4) 0,22 

2006:04:2008:04 (4 , 12) 0,10 

2008:04-2010:04 (3 , 8) 0,135 
 

The optimal configurations of layers and lags for the ANN system I found for the different 

subsamples show that most of estimated optimal ANN systems usually have three or four layers 

with a varying number of lags.  

 

4. ARMA methodology 

Data analysis 

 

A lengthly time series of data is required for univariate time series forecasting. It is usually 

recommended that at least 50 observations to be available and this is the case here since our data 

set consists on a vector of 172x1.  As it can be seen in Table I the monthly inflation mean for the 
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whole sample period under study is 0.659%.  We make a partition of the sample set in order to 

check whether radical changes in the behaviour of the series have occurred or not. Mean and 

standard deviation statistics for 1995-2003 and 2003-2010 show that while the period between 

1995-2003 was more inflationary than 2003-2010 the latter has been more volatile. However, 

further statistical tests (i.e Chow test or Andrews) should be taken to determine the existence of 

breaks, I avoid them here. In the trade-off an econometrician has to face between quantity of 

observations and regime stability, I chose a higher quantity of observations and I use all of them 

for estimation. 

 

Table 4: Inflationary process stats 

Period 1995-2010 1995-2003 2003-2010 

Mean 0,00659117 0,00796097 0,00625369 

Standard Deviation 0,00954361 0,00845609 0,00979184 

 

Testing for stationarity 

 

In order to estimate an ARIMA model is first necessary to  test the stationarity of the time series 

and to check if differencing is required. To proceed in this direction one can run Augmented 

Dickey Fuller test.  The testing procedure for the ADF test is the same as for the Dickey–Fuller 

test but it is applied to the model: 

 

(14) 1 1 1 ,t t t p t p ty t y y y                
 

 

where α is a constant, β the coefficient on a time trend and p the lag order of the autoregressive 

process. Imposing the constraints α = 0 and β = 0, corresponds to modelling a random walk and 

using the constraint β = 0, corresponds to modelling a random walk with a drift. Consequently, 

there are three main versions of the test. For all the subsamples of data I found that in general, 

inflation is statistically considered an stationary process.  

 

http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
http://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test
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Model estimation: Maximum Likelihood estimation 

 

Maximum likelihood estimation is a cornerstone of modern inferential procedures. To give a 

foundation of the estimation procedure we start forming a brief reminder on the basics of ML 

estimation. Given a sample size T, it is possible to define the density function. for the whole 

sample, namely the joint distribution of all the observations ( ; )f Y  , where  1,..., TY y y It‟s 

shape is determined by a k-vector of unkown parameters  which we assume is contained in ta 

set   and which can be used to evaluate the probability of observing a sample with any given 

characteristics.  

 

After observing the data, the values Y are given, and this function can be evaluated for any 

legitimate value of  .  In standard cases, this function has a unique maximum. The location of 

the maximum is unaffected if we consdir the logarithm of the likelihood or log-likelihood: fhis 

function will be denoted as: ( ) log ( ; )l f Y  . The functions lt( ) are called log-likelihood 

contributions: 
1

( ) ( )
T

t

t

l l 


 . Moreover, the location of the maximum is obviously determined 

by the data. This means that the value:  ˆ ( )Y ArgMax l   is some function of the observed 

data, which has the property, under mild conditions, of being a consistent, asymptotically normal 

and asimpottitcally efficient estimator of  .  

 

Sometimes it is possible to write down explictly the function ˆ( )Y  but in general it need not be 

since in these circumstances, the maximum can be found by means of numerical techniques. 

These often rely on the fact that the log-likelihood is a smoth function of  , and therefore on the 

maximum its partial derivatives should all be 0. The gradient vector, is a k-vector ( )g  with 

typical element: 

(15) 
1

( )( )
( )

T
t

i

ti i

ll
g




 


 

 
  
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The gradient-based algorithm used to estimate the likelihood function for different combinations 

of the parameters  can be shortly illustrated as follows: 

 

1. Pick a point 0  

2. Evalaute 0( )g   

3. If 0( )g   is samll, stop. Otherwise, compute a direction vector 0( ( ))d g   

4. Evalaute 1 0 0( ( ))d g     

5. Subsistute 0  with 1 ; 

6. Restart from 2. 

 

Model selection: Penalty functions 

Because of the highly subjective nature of the traditional Box-Jenkins methodology, time series 

analysts have sought alternative objective methods for identifying ARIMA models. Objective 

penalty criteria have been used by some authors instead o the traditional Box-Jenkins (1976) 

procedure. For examples of the use of objective penalty functions criteria see Gómez and 

Maravall (1998) or Meyler, Kenny and Quinn (1998).  

 

Penalty function statistics such as Akaike Information Criterion (AIC) or Bayesian Information 

Criterion (BIC) among others have been used to assist time series analysts in reconciling the 

need to minimize errors with the conflicting desire for model parsimony. These statistics all take 

the form of minimizing the sum of the residuals sum of squares plus a „penalty‟ term which 

incorporates the number of estimated parameters coefficients to factor in model parsimony. 

 

My approach is to test the ability of several combinations of AR and MA parameters in capturing 

the main features of the data for information criteria such as the Akaike Information and the 

Bayesian information one. 
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For the ARMA(p,q) process, I specify 100 models, that combine AR and MA parameters for 

p=1,2,3,…,10 and q=1,2,3…,10 and compute the values for these information criteria of model 

selection that are specified below for each subsample of interest. 

2ln
( ) ln | ( ) |

T
BIC p p pn

T
  

 

22
( ) ln | ( ) |AIC p p pn

T
    

I also run the test for pure AR(p) and MA(q) processes, however forecasting results are poor 

relative to ARMA in almost all subsamples of interest and I will take them out of the analysis. In 

the following part of this section I will proceed by reporting the results obtained in the model 

selection for each subsample according to information criteria commented before (For a more 

detailed explanation see ARMA estimation Appendix). 

 

Table 5: Selected ARMA (P,Q) models 

Subsample of forecast 
Selected competing ARMA (P,Q) 
models 

2002:04-2004:04   (7,9)  (9,5)    (1,1)     (10,9) 

2004:04-2006:04  (7,6) , (1,1)    (8,7)     (10,9) 

2006:04:2008:04   (8,8)  (2,1)   (9,5) 

2008:04-2010:04  (10,9)  (2,2)   (8,7) 

 

5. Forecast results  

 

Two program codes are written in MATLAB language for the design and direct forecast 

computing of the Feed-Forward network and ARMA approach to time series modelling. I built 

12-lags*10-layers networks and I train them with the LM algorithm for different subsamples of 

analysis. The idea is to replicate the situation that policy makers faced at the moment of 

forecasting with ARMA models and to check whether forecasts based on NN would have 

delivered more accurate results.  The way to proceed is straightforward. I first compute the 

optimal network configuration through the in sample RMSE measure and second I use that 
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configuration to perform forecasts computing the RMSFE for the periods of out-of-sample test 

for the NN and ARMA models selected before. The RMSFE is defined as: 

 

(16)  
2

1( ) ( ) ( )
T

a f

i i

i

RMSFE n T y y n    

Where y
a
 is the actual value of inflation, y

f
 the forecast valued of inflation and T are the number 

of periods. 

 

In the remaining of this section I will proceed providing the results of each process of neural 

network configuration and training together with a comparison between the more in-sample 

accurate ARMA(p,q) models selected in section 4 and ANN models selected in section  

 

First Subsample: 2002:04-2004:04 

 

The best model forecasting out of sample in this subsample of forecast 1 is the ARMA (10, 9). 

However the forecasts of all the models tend to deliver the same errors as it can be seen in Graph 

2, where the evolution of RMSFE along the sample of control of all models is reported 

Table 6: RMSFE results comparison. 

RMSFE ARMA(7,9) ARMA(9,5) ARMA(1,1) ARMA(10,9) NN(3,5) 

horizon 1 0,0010523 0,000474435 5,29E-05 0,00050048 0,00048064 

horizon 4 0,0024547 0,002400895 0,00321557 0,002283409 0,00221386 

horizon 12 0,0010845 0,000802928 0,00109589 0,000855934 0,00135465 

horizon 24 0,0019573 0,00156342 0,00164656 0,001598565 0,00139734 

Average 0,0018829 0,001824925 0,00184996 0,001724682 0,00177128 

 

 

In the first subsample the NN (3,5) is the second best model among the set of competing models 

with an  average RMSFE of 0.00177 and it produces the most accurate forecasts for the 4months 

and 24 months horizons. Meaning even with mistakes the network is accurate generalizing the 

long term pattern of the data. 
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Graph 2: First subsample RMSFE ANN vs ARMA(P,Q) 

 

Source: Own elaboration with BCP data 

 

For the first horizon the best model in terms of accuracy is a parsimonious ARMA(1,1) 

specification chosen by the BIC criteria while for the a horizon of 12 periods the best model is 

the ARMA(9,5) chosen by the AIC criteria. 

 

Second Subsample 2: 2004:04-2006:04 

 

The best model forecasting out of sample in this subsample of forecast 2 is the ARMA (10, 9). 

However the forecasts of all the models tend to deliver the same errors as it can be seen in Table 

7 below. In this subsample the neural network delivers the worst forecast of all of the competing 

modes. 

Table 7: RMSFE results in the second subsample 

RMSFE ARMA(7,9) ARMA(9,5) ARMA(1,1) ARMA(10,9) NN(3,5) 

horizon 1 0,0003477 0,000931 0,0006833 3,12E-05 0,00116 

horizon 4 0,0025675 0,0019122 0,0020474 0,00214343 0,00264 

horizon 12 0,0010352 0,0013312 3,80E-06 0,00134362 0,0017 

horizon 24 0,000717 0,0003477 0,0002662 0,00051575 2,50E-06 

Average 0,0015563 0,0014706 0,0014488 0,00143897 0,00156 
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For the first horizon the best model is the ARMA(10,9) . For the horizon of four periods the best 

model is the ARMA (9,5) while for the 12 month horizon the best model is an ARMA(1,1). 

Again, for the 2 years ahead forecast NN gets the best result. 

 

Graph 3: RMSFE Results ANN vs ARMA(P,Q) 

 

Source: Own elaboration with BCP data 

 

Forecast Subsample 3: 2006:04-2008:04  

 

In the third subsample the winner model is the ARMA(2,1) chosen by the BIC basically because 

of the low errors forecasting the first periods. Concretely is the best model when forecasting 1 

and 4 horizons ahead. 

Table: 8: RMSFE results in the third subsample 

RMSFE ARMA(8,8) ARMA(2,1) ARMA(9,5) NN(4,12) 

horizon 1 0,00158198 0,00133942 0,00172615 0,00151202 

horizon 4 0,00157054 0,00092989 0,00143437 0,00179896 

horizon 12 0,00067808 0,00085514 0,00010733 0,00210491 

horizon 24 0,00055003 0,00044976 0,00127978 0,00044848 

Average 0,00194081 0,00190952 0,00198767 0,00216457 
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The ANN(4,12) model performs 8.8%  worse than the ARMA(2,1) model on average but stills 

delivering the best forecast when forecasting 24 months. On the other hand ARMA(8,5) was the 

best model to forecast inflation 12 months ahead. 

 

Graph 4: RMSFE ANN VS ARMA (P,Q) 

 

Source: Own elaboration with BCP data 

 

Forecast Subsample 4: 2008:04-2010:04 

 

In the fourth subsample of test I found that the best model forecasting is the ARMA(8,7) selected 

by the RMSE criteria. The NN(3,8) gets the third place with an average RMSFE OF 0.00117. As 

in all the other subsamples they outperform ARMA(P,Q) specifications in the long run step 

ahead forecast. 
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Table 9: RMSFE results in the fourth subsample 

RMSFE ARMA(10,9) ARMA(2,2) ARMA(8,7) NN(3,8) 

horizon 1 0,00016826 0,00121882 0,00067017 0,00147262 

horizon 4 0,00058856 0,00025881 0,00120862 0,0005503 

horizon 12 0,00176785 0,00262773 0,00250007 0,00134093 

horizon 24 0,00030947 0,00034226 0,00062254 0,00026343 

Average 0,00125169 0,00105433 0,00105401 0,00117024 

 

Graph 5: RMSFE Results ANN vs ARMA(P,Q) 

 

Source: Own elaboration with BCP data 

 

6. Conclusion 

In this research I have studied the ability in forecasting monthly inflation of NN models that 

have been trained implementing the early stopping procedure and that have learned through the 

LM algorithm, finding that this common NN approach outperforms ARMA models in 24 step 

ahead out of sample direct forecast. However, for all the subsamples of test the RMSFE of 

optimal NN configurations tends to be higher on average. Despite being a competitive alternative 

to ARMA(P,Q) models chosen under procedures such as the AIC, BIC, Likelihood or RMSE, 

the results shown here contradict the intuition of superiority in out-of-sample forecasts provided 
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by in Tckaz (1999),  Paul McNelis and Peter McAdamn (2004) Nakamura (2005), Haider and 

Hanif (2009), Manfred Esquivel (2009)  among others. Further research using abundant 

exchange rate data as target and with fuzzy logic as inference engine for the network, is 

recommended to explore the full potential of this method, given that for monthly frequency ANN 

classical modeling does not deliver an improvement in forecasts accuracy. 
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8. NN APPENDIX 

8.1 TRAINING AND LEARNIN 

Graph 6: Training process 

 

Source: Own elaboration with BCP data 

Graph 7: Training state 

 

Source: Own elaboration with BCP data 
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8.2 NN Model selection  

Table 10: RMSE First subsample 1996-2002:04  

RMSE Matrix 1 Lag 2 Lags 3 Lags 4 Lags 5 Lags 6 Lags 7 Lags 8 Lags 9 Lags 10 Lags 11 Lags 
12 
Lags 

1 Layer 0,175 0,167 0,17 0,174 0,172 0,181 0,168 0,169 0,182 0,1686 0,159 0,177 

2 Layers 0,1722 0,168 0,166 0,18 0,173 0,172 0,166 0,172 0,169 0,2178 0,178 0,162 

3 Layers 0,1761 0,164 0,179 0,165 0,156 0,198 0,172 0,194 0,185 0,1692 0,169 0,161 

4 Layers 0,1811 0,204 0,171 0,177 0,181 0,18 0,175 0,178 0,167 0,1788 0,204 0,207 

5 Layer 0,1703 0,183 0,177 0,174 0,178 0,177 0,18 0,178 0,191 0,2147 0,192 0,241 

6 Layers 0,1724 0,173 0,179 0,175 0,207 0,178 0,174 0,187 0,187 0,1963 0,17 0,186 

7 Layer 0,2173 0,188 0,189 0,203 0,233 0,18 0,192 0,187 0,184 0,2395 0,241 0,168 

8 Layers 0,2079 0,19 0,179 0,173 0,179 0,178 0,203 0,209 0,226 0,2233 0,19 0,199 

9 Layer 0,2767 0,206 0,188 0,208 0,179 0,199 0,211 0,188 0,193 0,2088 0,169 0,202 

10 Layers 0,1785 0,18 0,203 0,22 0,176 0,225 0,206 0,213 0,187 0,2441 0,187 0,229 

 

Table 11: Second Subsample 1996:2004:04 

RMSE Matrix 1 Lag 2 Lags 3 Lags 4 Lags 5 Lags 6 Lags 7 Lags 8 Lags 9 Lags 
10 
Lags 

1 Layer 0,243 0,25 0,26 0,253 0,254 0,266 0,284 0,292 0,282 0,292 

2 Layers 0,248 0,252 0,268 0,26 0,267 0,258 0,264 0,309 0,271 0,267 

3 Layers 0,273 0,248 0,268 0,246 0,297 0,255 0,266 0,297 0,252 0,276 

4 Layers 0,275 0,277 0,284 0,227 0,251 0,268 0,288 0,257 0,369 0,387 

5 Layer 0,273 0,253 0,27 0,282 0,247 0,253 0,271 0,259 0,325 0,329 

6 Layers 0,328 0,491 0,283 0,273 0,276 0,332 0,284 0,317 0,326 0,292 

7 Layer 0,348 0,268 0,389 0,264 0,382 0,273 0,3 0,294 0,337 0,326 

8 Layers 0,268 0,358 0,343 0,353 0,264 0,332 0,363 0,336 0,552 0,33 

9 Layer 0,331 0,287 0,384 0,267 0,302 0,335 0,335 0,331 0,402 0,335 

10 Layers 0,364 0,314 0,296 0,361 0,317 0,308 0,676 0,333 0,329 0,299 

11 Layers 0,315 0,414 0,378 0,267 0,367 0,356 0,305 0,367 0,558 0,527 

12 Layers 0,314 0,275 0,357 0,474 0,294 0,351 0,415 0,523 0,364 0,367 
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Table 12: RMSE Third subsample, 1996-2006:04 

RMSE 1 Lag 2 Lags 3 Lags 4 Lags 5 Lags 6 Lags 7 Lags 8 Lags 9 Lags 10 Lags 11 Lags 12 Lags 

1 Layer 0,123 0,128 0,127 0,123 0,13 0,123 0,124 0,13302 0,128 0,1167 0,1326 0,12 

2 Layers 0,125 0,129 0,127 0,141 0,125 0,133 0,127 0,13488 0,122 0,1414 0,1311 0,1238 

3 Layers 0,121 0,122 0,127 0,144 0,127 0,122 0,137 0,12901 0,131 0,1277 0,1281 0,1303 

4 Layers 0,345 0,12 0,125 0,134 0,145 0,117 0,139 0,12732 0,13 0,1284 0,1393 0,1062 

5 Layer 0,125 0,133 0,147 0,126 0,129 0,135 0,128 0,17584 0,147 0,1263 0,1295 0,1315 

6 Layers 0,135 0,127 0,117 0,136 0,133 0,154 0,143 0,17356 0,156 0,167 0,1361 0,1063 

7 Layer 0,123 0,224 0,128 0,147 0,155 0,167 0,128 0,16466 0,159 0,3382 0,1678 0,1227 

8 Layers 0,122 0,118 0,227 0,254 0,152 0,153 0,138 0,15104 0,184 0,155 0,1774 0,1386 

9 Layer 0,132 0,161 0,209 0,136 0,153 0,183 0,17 0,13585 0,213 0,136 0,2003 0,1379 

10 Layers 0,119 0,162 0,153 0,178 0,22 0,186 0,249 0,13589 0,149 0,1612 0,2065 0,1689 

11 Layers 0,146 0,156 0,16 0,129 0,178 0,209 0,149 0,13238 0,218 0,1954 0,1631 0,1417 

12 Layers 0,346 0,294 0,165 0,161 0,149 0,127 0,211 0,16641 0,169 0,1735 0,1847 0,1769 

Table 13: RMSE Fourth subsample, 1996-2008:04 

RMSE 1 Lag 2 Lags 3 Lags 4 Lags 5 Lags 6 Lags 7 Lags 8 Lags 9 Lags 10 Lags 11 Lags 12 Lags 

1 Layer 0,195 0,193 0,179 0,18 0,18 0,186 0,187 0,17943 0,184 0,181 0,18 0,1771 
2 
Layers 0,198 0,188 0,187 0,183 0,193 0,188 0,177 0,18337 0,172 0,1699 0,1788 0,1703 
3 
Layers 0,213 0,201 0,38 0,181 0,176 0,176 0,164 0,1351 0,163 0,2124 0,1873 0,1628 
4 
Layers 0,187 0,191 0,177 0,183 0,182 0,181 0,177 0,23122 0,156 0,1906 0,1672 0,1845 

5 Layer 0,364 0,191 0,267 0,18 0,203 0,185 0,175 0,17344 0,17 0,1843 0,1835 0,1766 
6 
Layers 0,273 0,227 0,189 0,183 0,198 0,201 0,161 0,16269 0,177 0,1711 0,1714 0,1684 

7 Layer 0,328 0,219 0,161 0,188 0,205 0,192 0,19 0,20077 0,169 0,1736 0,184 0,1907 
8 
Layers 0,49 0,19 0,22 0,192 0,188 0,215 0,185 0,21274 0,175 0,1881 0,1518 0,206 

9 Layer 0,177 0,222 0,215 0,178 0,193 0,179 0,187 0,21627 0,181 0,1788 0,1954 0,1611 
10 
Layers 0,297 0,193 0,266 0,194 0,222 0,189 0,199 0,18111 0,193 0,1736 0,2115 0,1747 
11 
Layers 0,25 0,266 0,222 0,181 0,265 0,168 0,2 0,17715 0,226 0,2174 0,1859 0,1533 
12 
Layers 0,245 0,257 0,176 0,151 0,435 0,191 0,198 0,21308 0,2 0,2274 0,2554 0,1668 
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8 ARIMA ESTIMATION APPENDIX 

9.1 First subsample, 1996-2002:04 

Table 14: Augmented Dickey Fuller tests results 

 

After running the tests, what I find is that for different specifications and for different lag lengths 

inflation series is a stationary process since for a 5% significance level we have to reject the null 

H0 of inflation having a unit root until a specification of 9 lags of autoregressive coefficients for 

the ADF trend-stationary and AR with drift test modalities. However when I run just the ADF 

AR test I have to reject the null at the lag order of 7 as it is shown above. 

 

Model selection tests 

 

The optimized log-likelihood estimation suggests a specification consisting of an ARMA(10,9)  

model with a value of 308.6 as it shows graph 8. In general this information criteria tends to 

reject ARMA model specifications with few parameters as it does the AIC criteria. AIC 

information criteria reach its minimum in the fitted ARMA(9,5) with value for the AIC function 

of -576.7. Bayesian information surface suggests an ARMA(1,1) with a minimum in  -560 and 

attending to RMSE the model to use is an ARMA (7,9). 

 

 

 

Test: ADF AR model 1 Lag 2 Lags 

3 

Lags 

4 

Lags 

 5 

Lags 

 6 

Lags 

7 

Lags 

 8 

Lags 

 9 

Lags 

10 

Lags 

11 

Lags 

12 

Lags 

Critical Value -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 -1,94 

T-Statistic  -4,93 -4,58 -3,62 -2,95 -2,45 -2,44 -1,84 -1,67 -1,48 -1,64 -2,01 -1,64 

ADF AR with drift 1 Lag 2 Lags 

3 

Lags 

4 

Lags 

 5 

Lags 

 6 

Lags 

 7 

Lags 

 8 

Lags 

 9 

Lags 

10 

Lags 

11 

Lags 

12 

Lags 

Critical Value -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 -2,88 

T-Statistic  -7,45 -7,59 -6,47 -5,59 -4,92 -5,18 -4,06 -3,8 -3,5 -3,99 -5,28 -4,44 

ADF trend stationary 1 Lag 2 Lags 

3 

Lags 

4 

Lags 

 5 

Lags 

 6 

Lags 

 7 

Lags 

 8 

Lags 

 9 

Lags 

 10 

Lags 

11 

Lags 

12 

Lags 

Critical Value -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 -3,44 

T-Statistic  -7,46 -7,62 -6,51 -5,64 -4,97 -5,25 -4,13 -3,88 -3,6 -4,09 -5,41 -4,57 
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Tale 15: Competing ARMA (p,q) models 

Competing Models Criteria 

ARMA(7,9) RMSE 

ARMA(9,5) AIC 

ARMA(1,1) BIC 

ARMA(10,9) Likelihood 
 

Graph 8: Likelihood surface 

 

Source: Own elaboration with BCP data 

 

Graph 9: Bayesian information surface 

 

Source: Own elaboration with BCP data 
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Graph 10: Akaike information surface 

 

Source: Own elaboration with BCP data 

 

Graph 11: RMSE surface 

 

Source: Own elaboration with BCP data 
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Second Subsample 1996-2004:04 

Table 16: Augmented Dickey Fuller tests results 

 

The process of inflation time series until 2004 is a stationary process for the drift specification 

while for the simple AR and trend stationary model setting the results vary across widely 

different lag specifications defining a U-pattern, meaning for middle lag lengths (i.e ,6-10 lags) 

the null of inflation having a unit root has to be accepted. 

 

Model selection tests 

The optimized log-likelihood estimation suggests a specification consisting of an ARMA(10,9)  

model with a value of 378.2 as it shows graph 12. In general this information criteria tends to 

reject ARMA model specifications with few parameters as it does the AIC criteria. AIC 

information criteria reach its minimum in the fitted ARMA(7,6) with value for the AIC function 

of -711.7. Bayesian information surface suggests an ARMA(1,1) with a minimum in  -696 and 

attending to RMSE the model to use is an ARMA (10,9). 

Table 17: Competing ARMA(p,q) models 

Competing Models Criteria 

ARMA(10,9) Likelihood 

ARMA(7,6) AIC 

ARMA(1,1) BIC 

ARMA(7,9) RMSE 

 

 

ADF TESTS 1 Lag 2 Lags 3 Lags 
4 
Lags 5 Lags 

6 
Lags 7 Lags 

8 
Lags 9 Lags 

10 
Lags 

11 
Lags 12 Lags 

Stat 1--> ADF AR model  -3,46 -2,782 -2,618 -2,16 -1,771 -1,56 -1,438 -1,38 -1,341 -1,383 -1,607 -1,254 

Cvalue1 -->ADF AR model -1,94 -1,944 -1,944 -1,94 -1,944 -1,94 -1,944 -1,94 -1,944 -1,944 -1,944 -1,9445 

Stat 2--> ADF AR with drift -5,36 -4,589 -4,651 -3,99 -3,438 -3,12 -3,036 -2,98 -3,149 -3,378 -4,784 -3,8364 

Cvalue2,-->ADF AR with drift -2,89 -2,891 -2,891 -2,89 -2,892 -2,89 -2,893 -2,89 -2,894 -2,894 -2,895 -2,8952 

Stat 3--> ADF trend 
stationary -5,32 -4,55 -4,611 -3,95 -3,384 -3,07 -2,976 -2,92 -3,081 -3,349 -4,925 -3,9784 

Cvalue3-->ADF trend 
stationary -3,46 -3,457 -3,458 -3,46 -3,459 -3,46 -3,46 -3,46 -3,462 -3,462 -3,463 -3,4634 
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Graph 12: Likelihood surface 2 

 

Source: Own elaboration with BCP data 

 

 

Graph 13: Bayesian information surface 2 

 

Source: Own elaboration with BCP data 
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Graph 14: Akaike Information surface 2 

 

Source: Own elaboration with BCP data 

 

Graph 15: RMSE 2 ARMA(P,Q) models matrix 

 

Source: Own elaboration with BCP data 
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Forecast subsample 3: 2006:04-2008:04 

 

Table 18: Augmented Dickey Fuller tests results 

ADF 1 Lag 2 Lags 

3 

Lags 4 Lags 

5 

Lags 6 Lags 

7 

Lags 8 Lags 9 Lags 

10 

Lags 11 Lags 

12 

Lags 

Stat 1--> ADF AR model  -4,008 -3,438 -2,79 -2,43 -1,9 -1,739 -1,47 -1,304 -1,26573 -1,401 -1,7385 -1,303 

Cvalue1 -->ADF AR 

model -1,944 -1,944 -1,94 -1,944 -1,94 -1,944 -1,94 -1,944 -1,94387 -1,944 -1,9439 -1,944 

Stat 2--> ADF AR with 

drift -6,328 -5,942 -5,21 -4,814 -4,05 -3,904 -3,53 -3,269 -3,36067 -3,794 -5,02 -4,143 

Cvalue2,-->ADF AR 

with drift -2,891 -2,891 -2,89 -2,892 -2,89 -2,893 -2,89 -2,893 -2,8939 -2,894 -2,8947 -2,895 

Stat 3--> ADF trend 

stationary -6,303 -5,917 -5,19 -4,793 -4,03 -3,886 -3,51 -3,254 -3,34468 -3,775 -4,9968 -4,123 

Cvalue3-->ADF trend 

stationary -3,449 -3,449 -3,45 -3,45 -3,45 -3,45 -3,45 -3,451 -3,45136 -3,452 -3,4519 -3,452 

 

When running the set of Augmented Dickey Fuller tests I found that inflation can be considered 

a stationary process and then be modelled with ARIMAspecifications. Running THE ADF AR 

test I find that only up to a four lag inflation series is stationary and that for all the other 

specifications, with drift and with trend stationarity far all lag specifications process is stationary. 

 

Model selection tests 

The optimized log-likelihood estimation suggests a specification consisting of an ARMA(8,8)  

model with a value of 454.4 as it shows graph JJ. In general this information criteria tends to 

reject ARMA model specifications with few parameters as it does the AIC criteria. AIC 

information criteria reach its minimum in the fitted ARMA(8,8) with value for the AIC function 

of -711.7. Bayesian information surface suggests an ARMA(2,1) with a minimum in  -696 and 

attending to RMSE the model to use is an ARMA (9,5). 

Table 19: Selected ARMA models by criteria 

Competing Models Criteria 

ARMA(2,1) BIC 

ARMA(8,8) AIC 

ARMA(8,8) Likelihood 

ARMA(9,5) RMSE 
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Graph 16: Likelihood surface 3 

Source: Own elaboration with BCP data 

 

Graph 17: Bayesian information surface 3 

 

Source: Own elaboration with BCP data 
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Graph 18: Akaike Information Surface 3 

 

Source: Own elaboration with BCP data 

 

Graph 19: RMSE 3  

 

Source: Own elaboration with BCP data 
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Forecast subsample 4: 2008:04-2010:04 

 

Table 14: Augmented Dickey Fuller tests results 

ADF 1 Lag 2 Lags 3 Lags 4 Lags 5 Lags 6 Lags 7 Lags 8 Lags 9 Lags 10 Lags 11 Lags 12 Lags 

Stat 1--> ADF AR 

model  -4,538 -4,245 -3,31 -2,66 -2,23 -2,149 -1,51 -1,355 -1,14 -1,343 -1,6754 -1,188 

Cvalue1 -->ADF AR 

model -1,943 -1,943 -1,94 -1,943 -1,94 -1,943 -1,94 -1,943 -1,942 -1,943 -1,943 -1,943 

Stat 2--> ADF AR 

with drift -7,058 -7,33 -6,29 -5,458 -4,9 -5,062 -3,88 -3,725 -3,44 -4,051 -5,3189 -4,197 

Cvalue2,-->ADF AR 

with drift -2,882 -2,882 -2,88 -2,882 -2,88 -2,883 -2,88 -2,883 -2,88 -2,883 -2,8836 -2,884 

Stat 3--> ADF trend 

stationary -7,043 -7,313 -6,27 -5,448 -4,89 -5,051 -3,87 -3,714 -3,43 -4,036 -5,2977 -4,179 

Cvalue3-->ADF trend 

stationary -3,442 -3,442 -3,44 -3,443 -3,44 -3,443 -3,44 -3,444 -3,444 -3,445 -3,4448 -3,445 

 

Running the ADF AR test I find that only up to a six lags length process, inflation series is 

stationary and that for all the other specifications we have to accept the null of the existence of 

unit roots. The ADF with drift and with trend stationarity far all lag specifications process is 

stationary. 

 

Model selection tests 

 

The optimized log-likelihood estimation suggests a specification consisting of an ARMA(10,9)  

model with a value function of 527.9 as it shows graph 20.  Bayesian Information criteria reach 

its minimum in the fitted ARMA(2,2) with value for the BIC function of -973.2. Akaike 

Information Criteria surface suggests an ARMA(10,9) with a minimum in  -1014.  Finally, 

attending to RMSE the model to use is an ARMA (8,7) 

Table 20: Selected ARMA(P,Q) models by criteria 

Competing Models Criteria 

ARMA(2,2) BIC 

ARMA(8,7) RMSE 

ARMA(10,9) Likelihood 

ARMA(10,9) AIC 
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Graph: 20: Likelihood surface 4 

 

Source: Own elaboration with BCP data 

 

Graph 21: Bayesian information surface 4 

 

Source: Own elaboration with BCP data 
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Graph 22: Akaike Information Surface 4 

 

 

Source: Own elaboration with BCP data 

 

Graph 23: RMSE 4 

 

Source: Own elaboration with BCP data 
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