
  

A BVAR MODEL FOR FORECASTING 

PARAGUAY’S INFLATION RATE IN 

TURBULENT MACROECONOMIC 

ENVIROMENTS 

Vicente Ríos Ibáñez 

Documentos de Trabajo 

N° 13 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Los Documentos de Trabajo del Banco Central del Paraguay difunden investigaciones económicas 

llevadas a cabo por funcionarios y/o por investigadores externos asociados a la Institución. Los 

Documentos incluyen trabajos en curso que solicitan revisiones y sugerencias, así como aquellos 

presentados en conferencias y seminarios. El propósito de esta serie de Documentos es el de estimular 

la discusión y contribuir al conocimiento sobre temas relevantes para la economía paraguaya y su 

ambiente internacional. El contenido, análisis, opiniones y conclusiones expuestos en los Documentos 

de Trabajo son de exclusiva responsabilidad de su o sus autores y no necesariamente coinciden con la 

postura oficial del Banco Central del Paraguay. Se permite la reproducción con fines educativos y no 

comerciales siempre que se cite la fuente. 

 

 

 

The Working Papers of the Central Bank of Paraguay seek to disseminate original economic research 

conducted by Central Bank staff or third party researchers under the sponsorship of the Bank. These 

include papers which are subject to, or in search of, comments or feedback and those which have been 

presented at conferences and seminars. The purpose of the series is to stimulate discussion and 

contribute to economic knowledge on issues related to the Paraguayan economy and its international 

environment. Any views expressed are solely those of the authors and so cannot be taken to represent 

those of the Central Bank of Paraguay. Reproduction for educational and non-commercial purposes is 

permitted provided that the source is acknowledged. 



 2 

 

A BVAR model for forecasting Paraguay’s 

Inflation rate in turbulent macroeconomic 

environments 

     

         Vicente Rios Ibáñez 

 

Departamento de Síntesis Macroeconómica e Investigación 

 

Banco Central del Paraguay 

 

January 2011 

 

Abstract 

 

In this research I explore the methodology of Bayesian autoregressive methods to forecast 

inflation and other macroeconomic time series of interest. I estimate a Bayesian vector of 

autoregressive model to forecast inflation, GDP and the interest rate of Paraguay taking as main 

approach the Minnesota prior methodology developed by R.B. Litterman (1984). The main out 

of sample accuracy statistics, the RMSFE and U-Theil statistic results show that in the 75% of 

the subsamples of forecast characterized as turbulent macro environments, Bayesian 

specifications outperform traditional VAR models in terms of accuracy. When using quarterly 

data Bayesian techniques deliver also more accurate forecasts than VAR models ones. 
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1. Introduction 

 

In this research I study Bayesian inference methods in order to contribute to Paraguayan Central 

Bank monetary policy forecasts and to the growing literature of Bayesian forecasting. The basic 

idea here is that given the scarcity of data to forecast macroeconomic time series with common 

unrestricted vector of autoregressive (UVARs), priors about the probabilistic density of the 

parameters of interest can be used to outperform the original UVAR models in terms of accuracy 

as in Koop and Korobilis (2010). In particular what I do is to compare the accuracy of the 

forecast results of Minnesota Prior elicitation approach in a BVAR modelling environment 

versus the results obtained with a VAR using the RMSFE as measure to determine whether 

should be preferable to forecast with Bayesian vector of autoregressive models (BVAR). The 

main finding of this paper is that Bayesian techniques improve the performance of traditional 

VAR models in the 75% of turbulent subsamples used to check forecast accuracy.  

 

2. BVAR modelling approach 

 

Bayesian Vector of Autoregressive modelling approach provides a general method for 

combining a modeller’s beliefs with the evidence contained in the data (i.e see Hamilton (1994)). 

In contrast to the classical approach based on estimating a set of parameters, Bayesian statistics 

presupposes a set of prior probabilities about the underlying parameters to be estimated.  

 

A recent compilation of related literature has mentioned (see Koop and Korobilis (2010)), 

traditional VAR and Bayesian techniques to forecast macroeconomic time series differ in 

relation to three issues: 

 

First, VARs are not parsimonious models. They have a great number of coefficients. For 

instance, Mn contains KM parameters, which for simple a VAR(4) with five variables is 105.  

An illustrative graph is attached below showing the pattern of increase in the number of 

parameters of a VAR model is exponential. 
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Graph 1: VAR model patameters 

 

Source: Own elaboration 

 

With quarterly or monthly macroeconomic data to get robust estimates of the parameters the 

amount of data needed for each variable might be at most a few hundred. Without prior 

information it is hard to obtain precise estimates of so many coefficients and thus, forecasts such 

as impulse responses will tend to be imprecisely determined. For this reason it can be desirable 

to shrink forecasts and Bayesian techniques adding prior information offers a sensible way of 

doing shrinkage.  

 

Second, the priors used with BVARs differ in whether they lead to analytical results for the 

posterior and predictive densities or whether Monte Carlo Markov Chain (MCMC) methods are 

required to carry out Bayesian inference.  In BVARs, natural conjugate priors lead to analytical 

results, which can greatly reduce the computational burden.  

 

 Third, the priors differ in how easily they can handle departures from the unrestricted VAR  

such as allowing for different equations to have different explanatory variables, allowing the 

coefficients to change over time, etc.  
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Working with Bayesian models implies updating our beliefs after seeing the data. For example, 

one might have a strong prior that the first autoregressive coefficient in an AR(p) model for the 

inflation is equal to unity and that all other coefficients are zero. Such a prior would be 

consistent with the view that the inflation rate follows a random walk or that changes in the 

inflation rate are completely unpredictable.  

 

Bayesian estimation of the parameters of a VAR(p) model will revise this prior view in the light 

of the empirical evidence contained in a time series model of inflation and other variables. A 

prior hypothesis about a particular parameter value can be confirmed by any observation which 

is likely given the truth of the prior hypothesis. This contrasts significantly with classical 

approaches to parameter estimation such as the maximum likelihood where one chooses as point 

estimates values such that the likelihood of obtaining the actual sample of data being maximized 

regardless of any prior probabilities which are or could be assigned to the parameters.  

 

Bayesian econometrics makes use of equation (1) to perform statistical inference analysis: 

 

(1) 
( | ) ( )

( | )
( )

P y P
P y

P y

 
 

 

Where the data is represented by y and the BVAR model parameters are represented by θ.  

 

For Bayesian econometricians the object ( | )P y  is of fundamental interest. That is, it directly 

points out the question: given the data, what do we know about  ? The treatment of   as a 

random variable is controversial and it is based on a subjective view of what probability is. 

Established that we are interested in 
( | ) ( )

( | )
( )

P y P
P y

P y

 
  we can rewrite (4) as: 

 

(2) ( | ) ( | ) ( )P y P y P    ,  

 

where ( | )P y  is the posterior, the fundamental density of interest that tells us everything we 

know about θ after seeing the data, ( | )P y  is the likelihood function and one could think about 
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it as the data generating process and ( )P  is the prior representing all information we have about 

θ and that is not contained in the data. 

 

In addition to learning about the parameters of a model an econometrician might be interested in 

comparing different models. A BVAR model is formally defined by a likelihood function and a 

prior. Hence the posterior of the parameters calculated using Mi is written as: 

 

(3) 
( | , ) ( | )

( | , )
( | )

i i
i i i

i

i

P y M P M
P y M

P y M

 
 

 

 

The logic of Bayesian econometrics suggests that we use Baye’s rule to derive a probability 

statement about what we do not know (i.e, whether the model is correct or not) conditional on 

what we do know (i.e, the data).   

 

 

3. Methodology 

 

The graphical visualization of the data shows two main highly turbulent time intervals located in 

the periods of 2002M01-2003M01 and 2003-2004M01 and 2006:04:2007:04 and 2007:05-

2008:05 where inflation rises up to a 5% in a month and reaches the historical bottom of a -2.2% 

variation in a month. Whether using linear methods to forecast in turbulent times is 

recommendable or not is not an issue in this research. However, it is an issue to determine 

whether should be preferable to forecast monthly inflation with Bayesian vector of 

autoregressive models rather than with traditional VARs.
 

 

Hence I first estimate a VAR model containing in the vector ty  variables such log(GDPt), πt and 

Interest rate (rt) using the Theil-Goldeberg mixed regression procedure for monthly frequency 

series. Second, I use the estimated posterior densities for the BVAR model and the traditional 

UVAR estimated coefficients to implement direct forecasts h periods ahead and compute the 
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RMSFE to determine which model was more useful for monetary policy decisions in the 

moments turbulences remarked before that can be seen in graph 2. 

  

Graph 2: Monthly inflation rate in % 

 

Source: Own elaboration with BCP data 

 

 The VAR (p) model can be written as: 

(4) 0

1

P

t j t j t

j

y a A Y 



    

Where yt for t=1....,T is an Mx1 vector containing observations on M time series variables, t  is 

an Mx1 vector of errors, 0a  is an Mx1 vector of intercepts and jA  is an MxM matrix of 

coefficients.  I assume t  to be i.i.d N[0, ].  The VAR model can be written in different ways 

and depending on how this is done, some of the literature expresses results in terms of 

Multivariate Normal and others in terms of the matric-vriante Normal distribution (see Canova 

(2007) or Koop (2010)). The latter arises if Y is defined to be a TxM matrix which stacks the T 

observations on each dependent variable in columns next to one another.   and E denote 

stackings of the errors in a manner conformable to y and Y respectively. Define 
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' '

1(1, ,...., )t t t px y y   and 

1

2

....

T

x

x
X

x

 
 
 
 
 
 

. Note that, if we let K=1+Mp be the number of coefficients 

in each equation of the VAR then X is a TxK matrix. Finally if A=( 0a , A1,...Ap)’ we define 

( )vec A   which is a KMx1 vector which stacks all the VAR coefficients into a vector. With all 

these definitions, we can write the VAR either as: 

 

(5) Y=XA+E  or  

(6) ( )t My I X      where 1~ [0, ( ' ) ]N X X  . 

 

The usual procedure to determine the lag length (P) of the independent variables is to use penalty 

methods. Penalty function statistics such as Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC) and Hannan-Quinn(HQC) among others have been used to assist 

time series analysts in reconciling the need to minimize errors with the conflicting desire for 

model parsimony. These statistics all the take the form of minimizing the sum of the residuals 

sum of squares plus a ‘penalty’ term which incorporates the number of estimated parameters 

coefficients to factor in model parsimony. For the monthly dataset I run the tests obtaining that 

for the first subsample of , 2002-2003, lag length criteria such as AIC, BIC and HQC  suggest 

the use of models as a BVAR(1) and BVAR(20). For the second sample that ranges from 2003-

2004 I found the models that minimize the loss of information are a BVAR(23) and a BVAR(1). 

For the forecast period 3 that ranges from 2006:05-2007:05 I find that the best model to forecast 

is a BVAR(14).  The last out of sample subsample for forecast in which I carry out analysis 

ranges from  2007:05 to 2008:05 and the model used to forecast is a BVAR(12) as recommended 

by all the information criteria: AIC, BIC and HQC.  All statistics of these entropy minimization 

tests can be found in the Appendix in tables JJ to P 

 

When working with quarterly data, since the purpose is to elucidate the superiority of the 

Bayesian method I will estimate 8 versions the system connecting the variables log(GDPt), 

log(interest rate) and πt for for each lag length ranging from p=1 to 8 and I will just use one 

subsample of forecast to measure the accuracy since the quarterly data set is quite small. 
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The estimation of the BVAR reported in this paper is based on Theil’s (1963) mixed estimation 

technique. Mixed estimation is a relatively simple and intuitive means of combining sample 

information witch stochastic prior information. Suppose that we have m priors which we wish to 

take account in deriving Bayesian estimates of the parameters of the VAR model. The idea is to 

estimate a regression with N+m observations: N of them corresponding to the information in the 

sample and m of them corresponding to the restrictions. The m observations corresponding to the 

restrictions are weighted relative the observations in the sample according the degree of tightness 

in each prior. As the amount of information in the prior tends toward zero, for an extremely 

diffuse prior, the mixed estimators of the parameters of BVAR tend toward the OLS estimates of 

the parameters of UVAR 

 

Once posterior estimation is performed I test the forecast accuracy of the models. I carry out 

recursive forecasting exercise using the direct method. That is, for 0 ,....,T h    I obtain the 

predictive density of hy  using data available through time   for h=1 and 4. 0  is 1994M12. I 

will use the notation where ,i ty  is a random variable we are wishing to forecast (CPI, IMAE and 

Interest rate), 0

,i ty   is the observed value of ,i ty   and ,( | )i tp y data   is the predictive density 

based on information available at time  .  I use the direct forecast method although it has been 

shown by J.H.Stock, Massimiliano Marcellino and Mark.W.Watson (2005) that iterated forecasts 

tipically outperform direct methods. The point of my choice is that in theory (see  direct forecasts 

are more robust to model misspecification that iterative ones.  Concretely, the RMSFE formula 

is: 

 

(8)  
2

1( ) ( ) ( )
T

a f

i i

i

RMSFE n T y y n   

 

The U-Theil Statistic is the other common measure to determine models accuracy: 
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(9) 

 

 

2
1

2
1 *

( ) ( )

( ) ( )

T
a f

i i

i

T
a

i i

i

T y y n

U Theil

T y y n







 







 

 

4.  Minnesota prior implementation 

 
 

Early work in the shrinkage of priors was done by researchers at the University of Minnesota and 

the Federal Reserve Bank of Minneapolis. The prior Litterman R.B (1984) used has come to be 

known as Minnesota prior. It is based on an approximation which leads to great simplifications 

in prior elicitation, to substitute   by ̂ . The original Minnesota prior simplifies further by 

assuming  to be a diagonal matrix. When   is replaced by ̂  we only have to worry about a 

prior for α and the Minnesota prior assumes: 

(10) 
( ) ~ [ , ]Mn Mnvec A N V  . 

 

To explain the Minnesota prior note first that the explanatory variables in the VAR in any 

equation can be divided into the own lags of the dependent variable, the lags of the other 

dependent variables and exogenous or deterministic variables. For the prior mean
 Mn , the 

Minnesota prior involves setting most or all of its elements to zero and ensuring shrinkage of the 

VAR coefficients toward zero and lessening the risk of over-fitting.  Prior statements can be 

expressed mathematically using the set of univariate prior density functions 

1 2( ), ( ),..., ( )Pg g g   of the autoregressive parameters  1 2, ,..., P    The random walk 

prior which one might wish to take account when estimating this model is that the mean of 1 is 

equal to unity whereas the means of all other autoregressive parameters of higher order than one 

are zero.  
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(11)    

1 1 1 1

2 2 2 2

[ ] ( ) 1

[ ] ( ) 0

...........................................

[ ] ( ) 0P P P P

E g d

E g d

E g d

   

   

   













 

 

 







 

 

The original R.B Litterman or Minnesota prior (1984) was based on the idea that each series is 

best described as a random walk around an unknown deterministic component. Hence the prior 

distribution is centered around the random walk specification for variable n given by: 

(11) , , , 1n t n t n t ty y   
 

 

According to this specification, the mean of the prior distributions on the first lag of variable n in 

the equation for variable n is equal to unity. The mean of the prior distribution on all other 

coefficients is equal to zero. Of course, if the data suggest that there are strong effects from lags 

other than the first own lag or from the lags of all the other variables in the model this will be 

reflected in the parameter estimates.  

 

Once the means haven been specified, the only other prior input is some estimate of the 

dispersion about the prior mean. As described by Litterman (1984), the standard error on the 

coefficient estimate for lag l of variable j in equation i is given by a standard deviation function 

of the form: 

(12)  
 ( ) ( , )

( , , ) i

j

g l f i j
S i j l s

s


 where 

(13) f(i,j)=1 if i=j and wij otherwise 

 

The ‘hyper-parameter’’   and functions ( )g l and ( , )f i j determine the tightness or weight 

attaching to the prior above. The term   is also called ‘’overall tightness’’ of the prior. Function 

g(l) determines the tightness on lag one relative to lag l. The tightness around the prior mean is 

normally assumed to increase with increasing lag length. This is achieved by allowing g(l) decay 

harmonically with decay factor d, i.e, g(l) = l
-d

 . The tightness of the prior on variable j relative to 

variable i in the equation for variable i is determined by the function f(i,j). This can be the same 
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across all equations in which case wij is equal to a constant w and the prior is said to be 

symmetric. Finally the multiplicative ratio si/sj in equation (12) reflects the fact that in general 

the prior can not be completely specified without reference to the data. In particular it corrects 

for differences in the scale used in the measurement of each variables included in the system. 

The Minnesota prior assumes the prior covariance matrix MnV  to be diagonal and the posterior 

has the form of: 

 

(14) 
| ~ [ , ]Mn Mny N V  where 

(15) 1 ´ 1ˆ[ ( ) ' ]Mn Mn MnV V X y       and  

(16) 1 ´ 1 ' 1ˆ[ ( ( ))]Mn MnV V X X     
 

 

5. Results discussion 

 

 

I estimate the model with the Theil-Goldberg (1971) procedure taking all the data I can into 

consideration and I elicitate the Minnesota prior as commented before for the different 

subsamples of interest which characterized for a high uncertainty associated to them. The 

concrete parameterization of the Minnesota prior I  use is the following one:
 

 

    Tightness =0.8; 

    Decay = 0.35; 

    Weight = 0.01; 

 

The results obtained from the house race between the VARs specifications and the different 

Bayesian models for the periods of 2002M01-2003M01 and 2003-2004M01 and 

2006:04:2007:04 and 2007:05-2008:0 show the improvement effect in accuracy Bayesian 

models due to shrinkage techniques of the coefficients what allows BVAR outperform with 

both monthly and quarterly data the results of VARs when forecasting. 
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Forecast subsample 1 

 

The implementation of the Bayesian approach in this subsample with the former prior yields 

with p=1, a slightly lower RMSFE for the BVAR at the first 2 horizons of the forecast and 

replicating the results of the UVAR for the rest of the period as it can ben seen in graph 3.
 

 

Graph 3: RMSFE BVAR(1) VS VAR(1) 

 

Source: Own elaboration with BCP data 

 

The results over all the variables captured in the U-Theil’s matrix show that the model performed 

relatively well when forecasting inflation rate, improving imae’s and interest rates forecast 

results for the case of the BVAR(1). 
 

 

Table 1: U-Theil BVAR(1)/VAR(1) 

BVAR(1) h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil Imae 0,9743 0,92524 0,64706 0,889 0,804 3,1774 0,9092 1,1702 1,1033 1,09 1,1 0,9 

U-Theil Int rate 0,6546 0,45333 1,02114 4,563 1,415 2,1963 1,0921 1,04 1,0385 1,03 1,03 1,03 

U-Theil Infla 0,9077 0,93344 0,69426 0,936 0,844 1,0041 1,0032 1,0037 1,013 0,97 1,01 1,01 

 

The BVAR(20) specification suggested by the HQC and AIC methods results in model that 

outperforms clearly the traditional VAR(20) model in terms of accuracy as it can be seen in the 

Graph 3 whre RMSFE of both models is presented. U-Theil results show during almost of all the 

sample BVAR forecasts outperform traditional VARs but no in some of the monetary policy 

decision horizons as it is the case for h=4 and h =12 where they perform worse. 
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Graph 4: RMSFE BVAR(20) vs VAR(20) 

 

Source: Own elaboration with BCP data 

 

Table 2: U-Theil Statistic First subsample 

BVAR(20) h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil Imae 3,05802 1,07553 0,262 0,379 0,0283 0,29 0,463 0,5128 0,55 0,72 0,37 0,25 

U-Theil Int rate 0,1011 0,09042 0,033 0,147 0,2171 0,2165 0,0396 0,2096 0,27 0,32 0,3 0,3 

U-Theil Int Infla 0,36443 0,23297 0,07 1,039 0,2376 0,5454 0,7626 0,5723 0,09 0,01 0,14 1,43 

 

Forecast subsample 2 

 

The forecast subsample ranges from 2003:01 to 2004:01. The selected models are a BVAR(23) 

and a BVAR(1) and as before, the compete with their homologous VAR specification. The Table 

VII containing the results of the U-Theil statistic for the BVAR (1) show the quality of the 

forecasts is better in imae rather than for the interest rate or the inflation.
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Table 3: U-Theil Statistic Second subsample 1 Lag model specification 

 

The comparison among the competing models shows that for the case of the BVAR(1) versus the  

VAR(1), Bayesian approach yields a slightly more accurate forecast for the Bayesian model  

rather than the VAR, as it can be seen in graph 4 in which it yields the best performance from 

horizon 5 to 11. 
 

 

Graph 4. BVAR(1) vs VAR(1) 

 

Source: Own elaboration with BCP data 

 

For the case of the BVAR(23) what I find is that BVAR(23) beats in terms of accuracy the 

VAR(23) model. It beats traditional VAR in all classical horizons of interest for monetary policy 

decision making, 1step, 4steps and 12 steps ahead. 
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RMSFEBVAR

RMSFEVAR

BVAR(1) h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil 
Imae 0,544012003 0,46059 0,5523 0,625 0,76 0,6476 0,7486 0,7332 0,8665 0,87 0,85 0,85 

U-Theil Int 
rate 1,342011107 1,29201 1,29079 0,165 0,877 0,9275 0,968 0,975 0,9852 0,99 0,99 0,99 

U-Theil 
Infla 1,054506314 1,15813 0,40838 1,337 0,932 0,9382 0,9385 0,9347 0,9048 1,05 1,13 0,83 
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Graph 5: BVAR(23) vs VAR(23) 

 

Source: Own elaboration with BCP data 

 

Table 4:  U-Theil Second subsample, 23 Lags model specification 

BVAR(23) h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil Imae 0,93379 0,11851 0,011 0,103 0,3473 1,373 0,1528 0,5419 0,5 0,5 0,32 0,82 

U-Theil Int rate 0,48844 0,70882 0,234 0,082 0,6466 24,48 1,7059 1,9079 10,4 8,25 4,35 5,06 

U-Theil Int Infla 0,83086 2,12967 0,26 0,856 5,7719 0,1453 0,2404 5,0926 17,3 0,57 0,22 0,14 

 

Thus on the second subsample of check Bayesian methods outperform with both models, 

BVAR(1) and BVAR(23) the UVAR(p) corresponding opponents.   
 

 

Forecast subsample 3 

 

In this subsample that ranges from 2006:04:2007:04 Bayesian approach leads again, to more 

accurate forecasts for the short term and the long term as it can be seen in graph 5. 
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Graph 6. RMSFE BVAR(14) Vs VAR(14) 

 

Source: Own elaboration with BCP data 

 

Table 5. U-Theil Statistic third subsample 

 

As it shows the Table 5, Bayesian methods clearly outperform VAR since the U-Theil is usually 

below 1. However in this subsample, the biggest difference between BVAR and VAR in terms of 

performance is found in forecasting the imae. Inflation forecasts are dominated by Bayesian 

VAR(14) from the first period to the sixth one and again from the 9
th

 period to the 12
th

. Taking 

the mean of the RMSFE one can observe that traditional VAR methods (0,0031) outperform 

BVAR (0,0033). The graphical illustration is attached in Graph 6 below.
 

 

Forecast subsample 4 

 

In this subsample, the Bayesian approach performs poorly when compared to traditional 

VAR.  For the first policy horizon VAR(12) delivers more accurate results accounting for a 

0 2 4 6 8 10 12
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
RMSFE Evolution

 

 

RMSFEBVAR
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BVAR(14) h=1 H=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil 

Imae 1,36443294 0,23704 0,69559 0,235 0,718 0,768 0,2296 0,3369 0,0044 0,34 0,36 0,41 

U-Theil Int 
rate 1,097169909 0,97068 8,58503 0,831 0,914 0,1933 0,0035 0,1249 0,2107 0,38 0,44 0,6 

U-Theil Int 
Infla 0,172544965 0,5057 0,35117 0,508 0,605 6,8435 1,4588 2,2901 2,297 0,75 0,59 0,65 
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forecast 2.36 times more precise. On the fourth horizon Bayesian outperforms traditional 

VAR and as it is measured in table 6 for 8 and 12 months, the U-Theil statistics show that 

in general they are very similar. However, in overall accuracy VAR (12) is the winner in 

this subsample. 

 

Graph 6: RMSFE BVAR(12) vs VAR(12) 

 

Source: Own elaboration with BCP data 

 

Table 6: U-Theil Statitics fourth subsample 

BVAR(13) h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 h=9 h=10 h=11 h=12 

U-Theil Imae 0,74134 0,67875 3,755 1,603 0,7811 1,9093 9,8632 0,2695 0,64 0,93 0,92 0,38 

U-Theil Int rate 1,29671 2,08221 1,453 1,737 3,5514 10,941 10,484 16,432 3,74 27,7 10,4 1,47 

U-Theil Int Infla 2,36791 0,27159 1,189 0,444 1,0548 0,9702 1,094 1,0697 1,05 0,59 59,9 0,98 

 

With the analysis performed above I have shown how in general, using the Minnesota prior in 

Bayesian time series modeling delivers more accurate forecasts than traditional VAR models for 

the case of forecasting monthly inflation in Paraguay. However, results should be taken 

cautiously since for most of the cases the differences are low and only remarkable when treating 

with highly parameterized structures, the priors seem to produce important effects, at least for 
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the first three subsamples. Only in one out of the four subsamples of check I find VAR 

improving Bayesian approach.
 

 

7. Conclusions 

 

The main finding of this research is that BVAR models have shown to be more accurate 

than traditional unrestricted VARs for the 75% of the turbulent subsamples for which 

coefficients have been estimated and forecasts computed. The measures implemented here 

to test for the model accuracy have been the RMSFE and U-Theil. Using quarterly data 

increases the support of the empirical evidence.  The forecasts results of the period ranging 

from 2009Q2-2010Q1 using quarterly data with Bayesian models also show lower 

RMSFEs than VARs. Monetary authorities on the light of this research can have a good 

ally by using this forecast method. 
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9. Appendix 

9.1 Monthly forecasts 

 

 First Forecast period: 2002-2003, BVAR(1) 
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First Forecast period: 2002-2003, BVAR(1), BVAR(20) 

 

 

 

 

 

Second Forecast period: 2003-2004, BVAR(23) 
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Third Forecast period: 2006:04-2007:04 

BVAR (14) 

 

 

 

Fourth Forecast period. 2007: 05-2008:05 

BVAR(12) 
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9.2 Tables: Information Criterias 

 

Estimation subsample 1: 1996-2002 

 

Table 10: Model selection criteria statistics 

 

Retardo s  log.veros p(RV) AIC BIC HQC 

1 416,44633   -12,444503 
-
12,043077* -12,286115 

2 426,16066 0,02179 -12,466482 -11,763987 -12,189303 

3 430,99765 0,37752 -12,338389 -11,334826 -11,942419 

4 436,97921 0,2154 -12,245514 -10,940882 -11,730753 

5 438,45209 0,96641 -12,01391 -10,408209 -11,380358 

6 453,21479 0,00053 -12,191224 -10,284454 -11,438881 

7 458,2227 0,34921 -12,068391 -9,860551 -11,197257 

8 463,86656 0,2565 -11,965125 -9,456216 -10,9752 

9 471,14812 0,10366 -11,91225 -9,102272 -10,803534 

10 485,49544 0,00073 -12,076783 -8,965736 -10,849276 

11 494,1601 0,0438 -12,066465 -8,654349 -10,720166 

12 548,57099 0 -13,463723 -9,750538 -11,998633 

13 570,69386 0 -13,867503 -9,85325 -12,283623 

14 581,03316 0,01416 -13,908712 -9,59339 -12,206041 

15 596,27145 0,00036 -14,10066 -9,484269 -12,279198 

16 611,48259 0,00037 -14,291772 -9,374312 -12,351519 

17 622,20031 0,01085 -14,344625 -9,126095 -12,28558 

18 667,14598 0 -15,450646 -9,931047 -13,27281 

19 715,69146 0 -16,66743 -10,846762 -14,370803 

20 764,87795 0 
-
17,903937* -11,7822 

-
15,488519* 
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Table 11: Estimation subsample 2: 1996-2003 

Retardo s  log.veros p(RV) AIC BIC HQC 

1 470,03613   -12,379355 
-
12,005723* -12,230308 

2 478,63928 0,04558 -12,368629 -11,714773 -12,107798 

3 482,95303 0,47234 -12,241974 -11,307893 -11,869358 

4 488,19962 0,31205 -12,14053 -10,926226 -11,656129 

5 490,3513 0,89034 -11,955441 -10,460912 -11,359255 

6 504,30681 0,00099 -12,089373 -10,31462 -11,381402 

7 511,44199 0,11303 -12,038973 -9,983996 -11,219217 

8 519,07231 0,08402 -12,001954 -9,666753 -11,070414 

9 527,15765 0,0634 -11,977234 -9,361809 -10,933909 

10 541,42691 0,00077 -12,119646 -9,223997 -10,964536 

11 551,20319 0,02088 -12,140627 -8,964753 -10,873732 

12 599,40257 0 -13,20007 -9,743972 -11,82139 

13 608,08942 0,04318 -13,191606 -9,455284 -11,701141 

14 627,24936 0,00002 -13,466199 -9,449653 -11,863949 

15 634,25441 0,12197 -13,412281 -9,115511 -11,698247 

16 651,64237 0,00007 -13,638983 -9,061989 -11,813164 

17 661,42346 0,02082 -13,660093 -8,802875 -11,722489 

18 674,12942 0,00255 -13,760255 -8,622812 -11,710866 

19 695,22332 0 -14,087117 -8,66945 -11,925943 

20 740,63164 0 -15,071125 -9,373235 -12,798167 

21 755,40257 0,00052 -15,227096 -9,248982 -12,842353 

22 793,27198 0 -16,007351 -9,749012 -13,510823 

23 892,36444 0 
-
18,442282* -11,903719 

-
15,833969* 
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Table 12: Estimation subsample 3: 1996-2006:05 

Lags log.veros p(RV) AIC BIC HQC 

1 685,1318 NaN -13,622636 -13,51843 -13,580462 

2 685,28244 1,39586 -13,585648 -13,429338 -13,522388 

3 686,48288 0,54646 -13,569658 -13,361244 -13,48531 

4 686,53398 1,64234 -13,53068 -13,270162 -13,425244 

5 686,54214 1,856 -13,490842 -13,178222 -13,36432 

6 687,0288 0,97084 -13,460576 -13,095852 -13,312966 

7 687,35742 1,13296 -13,427148 -13,010322 -13,25845 

8 687,46744 1,48022 -13,389348 -12,920418 -13,199564 

9 687,51886 1,64122 -13,350378 -12,829344 -13,139506 

10 688,66378 0,56924 -13,333276 -12,760138 -13,101316 

11 692,25316 0,1163 -13,365064 -12,739822 -13,112018 

12 707,34732 0,0002 -13,626946 -12,949602 -13,352814 

13 708,36782 0,6248 -13,607356 -12,877908 -13,312136 

14 714,01172 0,03504 -13,680234 -12,898684 -13,363926 

15 714,01228 1,96224 -13,640246 -12,806592 -13,30285 

16 714,69978 0,81404 -13,613996 -12,728238 -13,255514 

17 714,71964 1,77584 -13,574392 -12,636532 -13,194824 

18 715,01392 1,17498 -13,540278 -12,550314 -13,139622 

19 715,03928 1,74694 -13,500786 -12,458718 -13,079042 

20 721,23562 0,0256 -13,584712 -12,49054 -13,141882 

21 721,333 1,50998 -13,54666 -12,400386 -13,082742 

22 721,7837 1,004 -13,515674 -12,317296 -13,030668 

23 722,5849 0,74146 -13,491698 -12,241216 -12,985606 

24 726,71824 0,0841 -13,534364 -12,23178 -13,007186 
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Table 13: Estimation subsample 4: 1996-2007:05 

 

Lags log.veros p(RV) AIC BIC HQC 

1 -580,6222 0 8,826602 9,33813 9,034474 

2 -569,74274 0,56812 8,93055 9,825728 9,294328 

3 -559,70702 0,6952 9,046818 10,325642 9,5665 

4 -532,41506 0,0025 8,911168 10,57364 9,586756 

5 -502,59764 0,00094 8,738652 10,78477 9,570144 

6 -492,59152 0,69998 8,85535 11,285116 9,842748 

7 -469,18596 0,0107 8,776438 11,58985 9,91974 

8 -458,6986 0,62498 8,88611 12,08317 10,185318 

9 -451,37436 1,2068 9,041962 12,622668 10,497074 

10 -442,68706 0,93324 9,177914 13,142266 10,78893 

11 -407,51752 1,20E-04 8,927264 13,275264 10,694184 

12 -254,82234 0 6,96091 11,692558 8,883736 

13 -237,53968 0,08894 6,971382 12,086678 9,050114 

14 -230,91 1,35122 7,137372 12,636314 9,372008 

15 -224,76572 1,4508 7,310448 13,193038 9,70099 

16 -192,40712 0,00034 7,100834 13,36707 9,64728 

17 -179,55938 0,33924 7,17605 13,825932 9,8784 

18 -156,47936 0,01204 7,101888 14,13542 9,960144 

19 -143,86482 0,36168 7,180508 14,597686 10,19467 

20 -123,70216 0,03386 7,148936 14,949762 10,319002 

21 -111,87316 0,44624 7,239024 15,423496 10,564994 

22 -106,76442 1,64946 7,427218 15,995338 10,909094 

23 -79,7769 0,00282 7,296014 16,24778 10,933794 

24 -27,37272 0 6,793762 16,129176 10,587448 

 

 

 

 

 



 


