Pronósticos de inflación con métodos de machine learning
dc.contributor.editor | Equipo de Investigación del Banco Central del Paraguay |
dc.creator | Biedermann, Gustavo |
dc.creator | Bogado, Analía |
dc.creator | Dinamarca, Pablo |
dc.creator | Diz, Sebastian |
dc.creator | Matto, Luis Carlos |
dc.date.accessioned | 2024-12-16T16:15:35Z |
dc.date.available | 2024-12-16T16:15:35Z |
dc.date.created | 2024-12 |
dc.date.issued | 2024-12-16 |
dc.identifier.citation | Arora, A. 2023. Random Forest: Exploration of Bagging and Ensemble. Obtenido de: https://medium.com/@ashisharora2204/random-forest-exploration-of-bagging-and-ensemble-a08efa5f608c |
dc.identifier.citation | Baybuza, I. 2018. Inflation Forecasting Using Machine Learning Methods. Russian Journal of Money and Finance. 77(4): 42-59. |
dc.identifier.citation | Bartolomé, K., & Zambrano, R. 2021. Workflowsets in Time Series. Obtenido de: https://rafael-zambrano-blog-ds.netlify.app/posts/workflowsets_timeseries/ |
dc.identifier.citation | Beiman, L. 2001. Random Forests. Machine Learning. 45, 5-32. |
dc.identifier.citation | Chakraborty, C. & Joseph, A. 2017. Machine Learning at Central Banks. Bank of England. |
dc.identifier.citation | Dhumne, S. 2023. Elastic Net Regression - Detailed Guide. Obtenido de Medium: https://medium.com/@shruti.dhumne/elastic-net-regression-detailed-guide-99dce30b8e6e |
dc.identifier.citation | Elliot, G., Gargano, A. & Timmermann, A. 2013. Complete Subset Regressions. Journal of Econometrics 177(2), 357-373. |
dc.identifier.citation | Espinosa-Zúñiga, J. 2020. Application of Random Forest and XGBoost Algorithms Based on a Credit Card Applications Database. |
dc.identifier.citation | Garcia, M.G.P., Medeiros, M.C., Vasconcelos, G.R.F., 2017. Real-time Inflation Forecasting With High-dimensional Models: The Case of Brazil. International Journal of Forecasting. 33(3), 679-693. |
dc.identifier.citation | Hall, A.S. 2018. Machine Learning Approaches to Macroeconomic Forecasting. Federal Reserve Bank of Kansas City. Economic Review, 4th Quarter of 2018, 63-81. |
dc.identifier.citation | Hyndman, R. y Athanasopoulos, G. 2018. Forecasting: Principles and Practice. 2ª edición, OTexts, Melbourne (Australia). |
dc.identifier.citation | Kumar, A. 2023. Regression Algorithms. Obtenido de: https://arunp77.medium.com/regression-algorithms-29f112797724 |
dc.identifier.citation | Kohlscheen, E., 2021. What Does Machine Learning Say About The Drivers of Inflation? Bank for International Settlements. BIS Working Paper N°. 980. |
dc.identifier.citation | Malkari, N. 2023. Exponential Smoothing: A Method for Time Series Forecasting. Obtenido de Medium: https://medium.com/@nikhilmalkari18/exponential-smoothing-a-method-for-time-series-forecasting-7ea35ca2c781 |
dc.identifier.citation | Medeiros, M., Vasconcelos, G. & de Freitas, E.H., 2016. Forecasting Brazilian Inflation With High Dimensional Models. Brazilian Review of Econometrics. 36(2), 223-254. |
dc.identifier.citation | Meuler, M. 2022. Inflation Forecasting with Random Forest: A Machine Learning Approach to Macroeconomic Forecasting. Lund University. |
dc.identifier.citation | Müller, A., & Guido, S. 2017. Introduction to Machine Learning with Python. O'Reilly. |
dc.identifier.citation | Patrap, B. & Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning Hold The Key to Better Forecasts? RBI Working Paper Series. |
dc.identifier.citation | Pramoditha, R. 2022. Overview of a Neural Network’s Learning Process. Obtenido de Medium: https://medium.com/data-science-365/overview-of-a-neural-networks-learning-process-61690a502fa |
dc.identifier.citation | Shrivastava, S. 2020. Cross Validation in Time Series. Obtenido de Medium: https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4 |
dc.identifier.citation | Simeone, O. 2018. A Very Brief Introduction to Machine Learning witg Applications to Communication Systems. Obtenido de IEEE Xplore: https://ieeexplore.ieee.org/document/8542764 |
dc.identifier.citation | Silva, G., & Piazza, W. 2023. Machine Learning Methods for Inflation Forecasting in Brazil: New Contenders versus Classical Models. Latin American Journal of Central Banking. |
dc.identifier.citation | Taylor, S. J., & Letham, B. 2018. Forecasting at Scale. The American Statistician, 72(1), 37–45 |
dc.identifier.citation | Theobald, O. 2017. Machine Learning for Absolute Beginners. Second Edition. |
dc.identifier.citation | Tibshirani, R. 1996. Regression Shrinkage and Selection via The Lasso. Journal of the Royal Statistical Society. 58(1), 267-288. |
dc.identifier.citation | Vanegas, J., & Vásquez, F. 2017. Multivariate Adaptative Regression Splines (MARS), Una Alternativa para el Análisis de Series de Tiempo. ScienceDirect, 235-237. |
dc.identifier.citation | Zou, H. & Hastie, T. 2005. Regularization and Variable Selection via Elastic Net. Journal of the Royal Statistical Society. 67(2), 301-320. |
dc.identifier.uri | https://repositorio.bcp.gov.py/handle/123456789/707 |
dc.description | El presente boletín analiza el desempeño de diversos métodos de Machine Learning (ML) en comparación con modelos econométricos tradicionales, como el ARIMA, para pronosticar la inflación en Paraguay. La inflación se mide a través de la variación mensual de los Índices de Precios al Consumidor (IPC) SAE, Libre y Subyacente. Para los modelos univariados, la evaluación se realizó utilizando un enfoque de ventanas recursivas. Los resultados destacan al modelo Random Forest como el más preciso para el IPC SAE, mientras que el ARIMA Boost sobresalió en las series del IPC Libre y Subyacente. En el caso de los modelos multivariados, que incluyeron más de 200 variables predictoras, el método LASSO obtuvo el mejor desempeño en la predicción de las tres medidas de inflación. Estos resultados resaltan el potencial de los enfoques de ML para complementar los modelos tradicionales en el pronóstico de la inflación. |
dc.format.extent | 20 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Banco Central del Paraguay |
dc.relation.ispartof | Boletín Macroeconómico |
dc.relation.ispartofseries | Boletines Macro |
dc.relation.isversionof | Boletines Macro; N°16 |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ |
dc.subject | INFLACION |
dc.subject | PRONOSTICOS ECONOMICOS |
dc.subject | MACHINE LEARNING |
dc.subject | MODELOS PREDICTIVOS |
dc.subject | ECONOMETRÍA COMPUTACIONAL |
dc.title | Pronósticos de inflación con métodos de machine learning |
dc.type | Boletín Macroeconómico |
dc.subject.jelspa | C53 |
dc.subject.jelspa | E31 |
dc.subject.jelspa | C45 |
dc.subject.jelspa | E37 |
dc.rights.accessRights | Open Access |
dc.type.spa | Boletín Macroeconómico |
dc.type.hasversion | Published Version |
dc.rights.cc | CC0 1.0 Universal |
dc.rights.spa | Acceso abierto |
dc.subject.lemb | Inflación |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit