Show simple item record

dc.contributor.editorEquipo de Investigación del Banco Central del Paraguay
dc.creatorBiedermann, Gustavo
dc.creatorBogado, Analía
dc.creatorDinamarca, Pablo
dc.creatorDiz, Sebastian
dc.creatorMatto, Luis Carlos
dc.date.accessioned2024-12-16T16:15:35Z
dc.date.available2024-12-16T16:15:35Z
dc.date.created2024-12
dc.date.issued2024-12-16
dc.identifier.citationArora, A. 2023. Random Forest: Exploration of Bagging and Ensemble. Obtenido de: https://medium.com/@ashisharora2204/random-forest-exploration-of-bagging-and-ensemble-a08efa5f608c
dc.identifier.citationBaybuza, I. 2018. Inflation Forecasting Using Machine Learning Methods. Russian Journal of Money and Finance. 77(4): 42-59.
dc.identifier.citationBartolomé, K., & Zambrano, R. 2021. Workflowsets in Time Series. Obtenido de: https://rafael-zambrano-blog-ds.netlify.app/posts/workflowsets_timeseries/
dc.identifier.citationBeiman, L. 2001. Random Forests. Machine Learning. 45, 5-32.
dc.identifier.citationChakraborty, C. & Joseph, A. 2017. Machine Learning at Central Banks. Bank of England.
dc.identifier.citationDhumne, S. 2023. Elastic Net Regression - Detailed Guide. Obtenido de Medium: https://medium.com/@shruti.dhumne/elastic-net-regression-detailed-guide-99dce30b8e6e
dc.identifier.citationElliot, G., Gargano, A. & Timmermann, A. 2013. Complete Subset Regressions. Journal of Econometrics 177(2), 357-373.
dc.identifier.citationEspinosa-Zúñiga, J. 2020. Application of Random Forest and XGBoost Algorithms Based on a Credit Card Applications Database.
dc.identifier.citationGarcia, M.G.P., Medeiros, M.C., Vasconcelos, G.R.F., 2017. Real-time Inflation Forecasting With High-dimensional Models: The Case of Brazil. International Journal of Forecasting. 33(3), 679-693.
dc.identifier.citationHall, A.S. 2018. Machine Learning Approaches to Macroeconomic Forecasting. Federal Reserve Bank of Kansas City. Economic Review, 4th Quarter of 2018, 63-81.
dc.identifier.citationHyndman, R. y Athanasopoulos, G. 2018. Forecasting: Principles and Practice. 2ª edición, OTexts, Melbourne (Australia).
dc.identifier.citationKumar, A. 2023. Regression Algorithms. Obtenido de: https://arunp77.medium.com/regression-algorithms-29f112797724
dc.identifier.citationKohlscheen, E., 2021. What Does Machine Learning Say About The Drivers of Inflation? Bank for International Settlements. BIS Working Paper N°. 980.
dc.identifier.citationMalkari, N. 2023. Exponential Smoothing: A Method for Time Series Forecasting. Obtenido de Medium: https://medium.com/@nikhilmalkari18/exponential-smoothing-a-method-for-time-series-forecasting-7ea35ca2c781
dc.identifier.citationMedeiros, M., Vasconcelos, G. & de Freitas, E.H., 2016. Forecasting Brazilian Inflation With High Dimensional Models. Brazilian Review of Econometrics. 36(2), 223-254.
dc.identifier.citationMeuler, M. 2022. Inflation Forecasting with Random Forest: A Machine Learning Approach to Macroeconomic Forecasting. Lund University.
dc.identifier.citationMüller, A., & Guido, S. 2017. Introduction to Machine Learning with Python. O'Reilly.
dc.identifier.citationPatrap, B. & Sengupta, S. (2019). Macroeconomic Forecasting in India: Does Machine Learning Hold The Key to Better Forecasts? RBI Working Paper Series.
dc.identifier.citationPramoditha, R. 2022. Overview of a Neural Network’s Learning Process. Obtenido de Medium: https://medium.com/data-science-365/overview-of-a-neural-networks-learning-process-61690a502fa
dc.identifier.citationShrivastava, S. 2020. Cross Validation in Time Series. Obtenido de Medium: https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
dc.identifier.citationSimeone, O. 2018. A Very Brief Introduction to Machine Learning witg Applications to Communication Systems. Obtenido de IEEE Xplore: https://ieeexplore.ieee.org/document/8542764
dc.identifier.citationSilva, G., & Piazza, W. 2023. Machine Learning Methods for Inflation Forecasting in Brazil: New Contenders versus Classical Models. Latin American Journal of Central Banking.
dc.identifier.citationTaylor, S. J., & Letham, B. 2018. Forecasting at Scale. The American Statistician, 72(1), 37–45
dc.identifier.citationTheobald, O. 2017. Machine Learning for Absolute Beginners. Second Edition.
dc.identifier.citationTibshirani, R. 1996. Regression Shrinkage and Selection via The Lasso. Journal of the Royal Statistical Society. 58(1), 267-288.
dc.identifier.citationVanegas, J., & Vásquez, F. 2017. Multivariate Adaptative Regression Splines (MARS), Una Alternativa para el Análisis de Series de Tiempo. ScienceDirect, 235-237.
dc.identifier.citationZou, H. & Hastie, T. 2005. Regularization and Variable Selection via Elastic Net. Journal of the Royal Statistical Society. 67(2), 301-320.
dc.identifier.urihttps://repositorio.bcp.gov.py/handle/123456789/707
dc.descriptionEl presente boletín analiza el desempeño de diversos métodos de Machine Learning (ML) en comparación con modelos econométricos tradicionales, como el ARIMA, para pronosticar la inflación en Paraguay. La inflación se mide a través de la variación mensual de los Índices de Precios al Consumidor (IPC) SAE, Libre y Subyacente. Para los modelos univariados, la evaluación se realizó utilizando un enfoque de ventanas recursivas. Los resultados destacan al modelo Random Forest como el más preciso para el IPC SAE, mientras que el ARIMA Boost sobresalió en las series del IPC Libre y Subyacente. En el caso de los modelos multivariados, que incluyeron más de 200 variables predictoras, el método LASSO obtuvo el mejor desempeño en la predicción de las tres medidas de inflación. Estos resultados resaltan el potencial de los enfoques de ML para complementar los modelos tradicionales en el pronóstico de la inflación.
dc.format.extent20
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherBanco Central del Paraguay
dc.relation.ispartofBoletín Macroeconómico
dc.relation.ispartofseriesBoletines Macro
dc.relation.isversionofBoletines Macro; N°16
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.subjectINFLACION
dc.subjectPRONOSTICOS ECONOMICOS
dc.subjectMACHINE LEARNING
dc.subjectMODELOS PREDICTIVOS
dc.subjectECONOMETRÍA COMPUTACIONAL
dc.titlePronósticos de inflación con métodos de machine learning
dc.typeBoletín Macroeconómico
dc.subject.jelspaC53
dc.subject.jelspaE31
dc.subject.jelspaC45
dc.subject.jelspaE37
dc.rights.accessRightsOpen Access
dc.type.spaBoletín Macroeconómico
dc.type.hasversionPublished Version
dc.rights.ccCC0 1.0 Universal
dc.rights.spaAcceso abierto
dc.subject.lembInflación


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit