Show simple item record

dc.creatorMolinas Sosa, Luis
dc.creatorVigo Pereira, Caio
dc.identifier.citationBalassa, B., 1964. The Purchasing-Power Parity Doctrine: A Reappraisal. Journal of Political Economy 72,584-596.
dc.identifier.citationBarnett, W.A., Kwag, C.H.,2006. Exchange Rate Determination from Monetary Fundamentals: an Aggregation Theoretic Approach. Frontiers in Finance and Economics 3, 29-48.
dc.identifier.citationBates, J.M., Granger, C.W.J., 1969. The combination of forecasts. Operations Research. Quarterly 20, 451-468.
dc.identifier.citationBernanke, B.S., Boivin, J., 2003. Monetary policy in a data-rich environment. Journal of Monetary Economics 50, 525-546.
dc.identifier.citationCerrato, M., Crosby, J., Kim, M., Zhao, Y., 2015. Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula. Available at https : //
dc.identifier.citationCheung, Y.W.,Chinn,M.D.,GarciaPascual,A.,2005. Empirical exchange rate models of the nineties: Are any fit to survive? Journal of International Money and Finance 24, 1150-1175.
dc.identifier.citationCheung, Y.W., Chinn, M.D., Garcia Pascual, A., Zhang, Y., 2017. Exchange rate prediction redux: new models, new data, new currencies. ECB Working Paper 2018.
dc.identifier.citationDornbusch, R., 1976. Expectations and exchange rate dynamics. Journal of Political Economy 84, 1161-1171.
dc.identifier.citationFaust, J., Rogers, J.H., Wright, J.H., 2003. Exchange rate forecasting: The errors we’ve really made. Journal of International Economics 60, 35-59.
dc.identifier.citationFrankel, J.A., 1979. On the Mark: A Theory of Floating Exchange Rates Based on Real Interest Differentials. American Economic Review 69, 610-622.
dc.identifier.citationHoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian model averaging: A tutorial. Statistical Science 14, 382-417.
dc.identifier.citationKilian, L., Taylor, M.P., 2003. Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics 60, 85-107.
dc.identifier.citationLam, L., Fung, L., Yu, Ip-Wing. 2008 Comparing Forecast Performance of Exchange Models. Available at http: // − and − research/research/working −papers/HKMAWP0808f ull.pdf
dc.identifier.citationLeamer, E.E., 1978. Specification Searches. Wiley, New York.
dc.identifier.citationLothian, J.R., Liuren, W., 2011. Uncovered interest-rate parity over the past two centuries. Journal of International Money and Finance 30, 448-473.
dc.identifier.citationMark, N., 1995. Exchange rates and fundamentals: Evidence on long-horizon predictability. American Economic Review 85, 201-218.
dc.identifier.citationMeese, R., Rogoff, K., 1983. Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of International Economics 14, 3-24.
dc.identifier.citationPilbeam, K., Langel and, K.N., 2015. Fore casting exchange rate volatility: GARCH models versus implied volatility forecasts. International Economics and Economic Policy 12, 127-142.
dc.identifier.citationRaftery, A. E., Madigan, D., Hoeting, J.A., 1997. Bayesian model averaging for linear regression models. Journal of the American Statistical Association 92, 179-191.
dc.identifier.citationStock, J.H., Watson, M. W., 2002. Fore casting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167-1179.
dc.identifier.citationStock, J.H., Watson, M.W., 2004. Combination forecasts of output growth in a seven country dataset. Journal of Forecasting 23, 405-430.
dc.identifier.citationWright, J.H., 2008. Bayesian Model Averaging and Exchange Forecasts. Journal of Econometrics 146, 329-341.
dc.description.abstractForecasting exchange rates is a very difficult task. Since Meese and Rogoff’s (1983) results showed that no model could outperform a driftless random walk in predicting exchange rates, there have been many papers which have tried to find some forecasting methodology that could beat the random walk, at least for certain forecasting periods. In particular, Wright (2008) introduced Bayesian Model Averaging as a tool to forecast exchange rates and Lam et al (2008) compared Bayesian Model Averaging and three structural models to a benchmark model (the random walk), both studies obtaining positive results. Also, Carriero et al (2009) found positive results using a Bayesian Vector Auto-regression model. The present paper is a small contribution to the same type of literature by comparing Purchasing Power Parity, Uncovered Interest Rate, Sticky Price, Bayesian Model Averaging, and Bayesian Vector Auto-regression models to the random walk benchmark in forecasting exchange rates between the Paraguayan Guarani and the US Dollar, the Brazilian Real and the Argentinian Peso. Forecasts are evaluated under the criteria of Root Mean Square Error, Direction of Change, and the Diebold-Mariano statistic. The results indicate that in shorter horizon forecasting BMA and BVAR can perform better but other models outperform the random walk at longer horizons.
dc.format.extent23 páginas
dc.relation.ispartofDocumentos de Trabajo
dc.relation.ispartofseriesDocumento de Trabajo
dc.relation.isversionofDocumento de Trabajo; N° 22
dc.titleComparing exchange rate forecastability: the Paraguay case
dc.title.alternativeComparación de la previsibilidad del tipo de cambio: el caso de Paraguay
dc.typeWorking Paper
dc.subject.keywordEXCHANGE RATE
dc.rights.accessRightsOpen Access
dc.type.spaDocumento de Trabajo
dc.type.hasversionPublished Version
dc.rights.ccCC0 1.0 Universal
dc.rights.spaAcceso abierto

Files in this item


This item appears in the following Collection(s)

Show simple item record work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit