A BVAR model for forecasting Paraguay’s inflation rate in turbulent macroeconomic enviroments
dc.creator | Ríos Ibáñez, Vicente |
dc.date.accessioned | 2020-12-23T14:24:07Z |
dc.date.available | 2020-12-23T14:24:07Z |
dc.date.created | 2011-01-01 |
dc.date.issued | 2011-01-01 |
dc.identifier.citation | Hamilton (1994) “Time series analysis” |
dc.identifier.citation | J.H.Stock, and Massimiliano Marcellino and Mark.W.Watson (2005): “A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series”, Journal of econometrics 2006, vol. 135, pp. 499-526 |
dc.identifier.citation | Koop and Korobilis (2010) "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics” Foundations and Trends® in Econometrics: Vol. 3: No 4, pp 267-358. |
dc.identifier.citation | Litterman, R.B. (1984a): "Specifying vector autoregressions for macroeconomic forecasting" Federal Reserve Bank of Minneapolis |
dc.identifier.citation | Litterman, R.B (1985) “Forecasting with Bayesian vector autoregressions, five years of experience” Federal Reserve Bank of Minneapolis |
dc.identifier.citation | Todd, R.M. (1984): "Improving economic forecasting with bayesian vector autoregressions", Federal Reserve Bank of Minneapolis |
dc.identifier.citation | Todd, R.M. (1988): "Implementing bayesian vector autoregressions" Federal Reserve Bank of Minneapolis |
dc.identifier.uri | http://repositorio.bcp.gov.py/handle/123456789/121 |
dc.description.abstract | In this research I explore the methodology of Bayesian autoregressive methods to forecast inflation and other macroeconomic time series of interest. I estimate a Bayesian vector of autoregressive model to forecast inflation, GDP and the interest rate of Paraguay taking as main approach the Minnesota prior methodology developed by R.B. Litterman (1984). The main out of sample accuracy statistics, the RMSFE and U-Theil statistic results show that in the 75% of the subsamples of forecast characterized as turbulent macro environments, Bayesian specifications outperform traditional VAR models in terms of accuracy. When using quarterly data Bayesian techniques deliver also more accurate forecasts than VAR models ones. |
dc.format.extent | 26 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.publisher | BCP |
dc.relation.ispartof | Documentos de Trabajo |
dc.relation.ispartofseries | Documento de Trabajo |
dc.relation.isversionof | Documento de Trabajo; N° 13 |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ |
dc.subject | INFLACIÓN |
dc.subject | PARAGUAY |
dc.title | A BVAR model for forecasting Paraguay’s inflation rate in turbulent macroeconomic enviroments |
dc.title.alternative | Un modelo BVAR para pronosticar la tasa de inflación de Paraguay en entornos macroeconómicos turbulentos |
dc.type | Working Paper |
dc.subject.jel | E00 |
dc.subject.keyword | INFLATION |
dc.subject.keyword | PARAGUAY |
dc.rights.accessRights | Open Access |
dc.type.spa | Documento de Trabajo |
dc.type.hasversion | Published Version |
dc.rights.cc | CC0 1.0 Universal |
dc.rights.spa | Acceso abierto |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit