DO DIVISIA MONETARY
AGGREGATES HELP FORECAST EXCHANGE RATES IN A NEGATIVE INTEREST RATE ENVIROMENT?

Luis Molinas Sosa
Jane Binner
Meng Tong

Documentos de Trabajo

Los Documentos de Trabajo del Banco Central del Paraguay difunden investigaciones económicas llevadas a cabo por funcionarios y/o por investigadores externos asociados a la Institución. Los Documentos incluyen trabajos en curso que solicitan revisiones y sugerencias, así como aquellos presentados en conferencias y seminarios. El propósito de esta serie de Documentos es el de estimular la discusión y contribuir al conocimiento sobre temas relevantes para la economía paraguaya y su ambiente internacional. El contenido, análisis, opiniones y conclusiones expuestos en los Documentos de Trabajo son de exclusiva responsabilidad de su o sus autores y no necesariamente coinciden con la postura oficial del Banco Central del Paraguay. Se permite la reproducción con fines educativos y no comerciales siempre que se cite la fuente.

The Working Papers of the Central Bank of Paraguay seek to disseminate original economic research conducted by Central Bank staff or third party researchers under the sponsorship of the Bank. These include papers which are subject to, or in search of, comments or feedback and those which have been presented at conferences and seminars. The purpose of the series is to stimulate discussion and contribute to economic knowledge on issues related to the Paraguayan economy and its international environment. Any views expressed are solely those of the authors and so cannot be taken to represent those of the Central Bank of Paraguay. Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.

Do Divisia monetary aggregates help forecast exchange rates in a negative interest rate environment?

Luis Molinas Sosa ${ }^{\dagger}$, Jane Binner ${ }^{\star}$, and Meng Tong ${ }^{\star}$
${ }^{\dagger}$ Central Bank of Paraguay
* University of Birmingham
\star University College London

August 2, 2021

Abstract

This paper contributes to the literature as the first work of its kind to examine the role and importance of Divisia monetary aggregates and concomitant user cost price indices as superior monetary policy forecasting tools in a negative interest rate environment. We compare the performance of Divisia monetary aggregates with traditional simple-sum aggregates in several theoretical models and in a Bayesian VAR to forecast the exchange rates between the euro, the dollar and yuan renminbi at various horizons using quarterly data. We evaluate their performance against that of a random-walk using two criteria: Root Mean Square Error ratios and the Diebold-Mariano statistic. We find that, under a free-floating exchange regime, superior Divisia monetary aggregates outperform their simple sum counterparts and the benchmark random walk in negative interest rate environment and non-negative interest rate environments, consistently.

Keywords: Forecasting, Exchange rates, Bayesian Vector Autoregression, Uncovered Interest Rate, Sticky Price.

1 Introduction

Forecasting exchange rates is very difficult. Although many economists have written studies on the matter and have found positive results, most of these have later been refuted or at least called into question. There is no one model that works in all circumstances and several authors have argued that none work. In particular, Meese and Rogoff (1983) presented compelling evidence that no model outperforms a driftless random-walk in forecasting exchange rates. Since then, researchers have had a hard time finding a convincing alternative. One such example is Lothian and Wu (2011) which shows that Uncovered Interest Parity (UIP) has remarkable forecasting power in longer time horizons; another is Wright (2008) where the author argues that Bayesian Model Averaging outperforms the random walk in shorter time horizons. Even so, in 2019 Cheung et al. (2019) produced results that reinforced the idea that no model can consistently beat a random walk. None of the aforementioned studies, however, has adopted the approach found in Barnett and Kwag (2006) where they use Divisia monetary aggregates and the User Cost Price within a structural model framework with great success in forecasting the US dollar/British pound exchange rate.

Our objective in this paper is to extend the Barnett and Kwag (2006) experiment by applying it to the Euro/US dollar, US dollar/Yuan, and Euro/Yuan exchange rates (henceforth, EUR/USD, USD/CYN, EUR/CYN) in a negative interest rate environment. In order to do this, we split our data into pre-negative
rates data and the complete data set (which includes negative interest rates). Just as in Barnett and Kwag's study, we employ Divisia Monetary aggregates (Barnett (1978, 1980)) and the User Cost Prices calculated for the Euro zone, the US and China in several structural models and a Bayesian VAR (BVAR) model. In particular, Divisia monetary aggregates replace simple-sum monetary aggregates and the User Cost Price replaces interest rates in each model. We start by evaluating the performance of the Hooper-Morton (HM) model and then proceed to the Flexible Price Monetary model (FP), the Sticky Price (SP) model, Uncovered Interest-rate Parity (UIP), and BVAR. The inclusion of UIP and BVAR in this paper is another innovation with respect to the Barnett and Kwag study. We evaluate the performance of each model using the Root Mean Square Error (RMSE) ratio and the Diebold-Mariano (DM) statistic and compare each model's performance to that of the random walk, as per standard practice in the literature. Each of the aforementioned models becomes HMD, FPD, SPD, and BVARD when it includes Divisia monetary aggregates and the User Cost Price, except UIP which becomes UIPUC, as it does not include Divisia aggregates.

This paper contributes to the literature as the first work of its kind to examine the role and importance of Divisia monetary aggregates and concomitant user cost price indices as superior monetary policy forecasting tools in a negative interest rate environment.

We use quarterly data and the forecasting periods are 1 through 12 quarters ahead. We run the regression for each model twice for each data set: once with the original variables and once with Divisia aggregates and the User Cost Price. We find that, under the RMSE criterion, using Divisia monetary aggregates helps produce forecasts for the EUR/USD that consistently out-perform simple-sum aggregates and the randomwalk in negative and non-negative rates environments using UIP and BVAR; for the EURO/CYN exchange rates, some consistency is observed using the BVAR; no such consistency is found for the USD/CYN. We believe the latter two results have to do with China's foreign exchange policies. Using the DM statistic, results are largely consistent with those under RMSE but are weighed even more heavily toward the use of the more sophisticated Divisia construction for higher levels of forecasting accuracy.

The rest of the paper proceeds as follows: in section 2, we discuss the previous literature related to exchange rate forecasting and Divisia Monetary aggregates; in section 3, we describe what the User Cost Price and Divisia monetary aggregates; in section 4, we refer to the evolution of China's foreign exchange policy; in section 5 , we discuss negative interest rates as a policy instrument; in section 6 , we present the models; in section 7, we describe the data and their sources present the results, briefly discussing them; section 8 concludes.

2 Literature Review

Forecasting models for exchange rates have existed for decades. PPP and UIP analyses and discussions can be found as far back as the sixties and as recently as 2013 (see, for instance, Balassa (1964) and Lothian and Wu (2011)). Dornbusch (1976) proposed the SP model based on monetary fundamentals and Frankel (1979) further developed this framework by emphasizing the role of expectations. Hooper and Morton (1982) extended this model to include current account balances. But almost immediately after that paper was published, Meese and Rogoff (1983) wrote a seminal study in which they convincingly argued that no exchange rate model can outperform a driftless random walk in out-of-sample forecasting. Since then, Mark (1995) proposed that at longer horizons a monetary fundamentals model could provide better out-of-sample forecasts. This model has been subject to criticism by Faust et al. (2003).

There have been, however, more recent attempts which have shown more promising results: Wright (2008)
the aforementioned Lothian and Wu (2011) are two such cases. Lace et al. (2015) argue that EUR/USD exchange rate can be determined by government yields in the short-run.

BVAR was used in forecasting as far back as Litterman (1986). Sarantis (2006) showed that a BVAR model outperforms a random walk in forecasting daily exchange rates. Banbura et al. (2007) used BVAR for forecasting employment, the Consumer Price Index (CPI) and the Fed Funds Rate with positive results for first-quarter predictions. In a similar fashion, Edge et al. (2010) use several BVAR specifications in order to forecast macroeconomic variables within a DSGE framework, while comparing the accuracy of the forecasts produced by their model to a benchmark model (the FRB/US model). Recently, Schüssler et al. (2018) have used VAR-based models with Bayesian estimation methods for exchange rate forecasting with some success.

More germane to the present study is, of course, Barnett and Kwag (2006) work where they were able to show that the use of Divisia monetary aggregates and the User Cost Price dramatically improve the forecasting power of structural models. In a similar vein, Ghosh and Bhadury (2018) show that Divisia Monetary aggregates are powerful indicators of exchange movements for several economies.The User Cost Price and Divisia Monetary aggregates were derived by Barnett (1978, 1980) which resulted in many volumes of work on monetary aggregation theory and the practical application of these concepts to different areas of economic research. Some of the most important works in the literature (but by no means all of it) has been collected in Barnett and Serletis (2000) and Barnett and Binner (2004). Reimers et al. (2002) found that Divisia aggregates for several countries in Europe have better out-sample-predicting power for the GDP deflator in the Euro area. Similarly, Schunk (2001) showed that using Divisia aggregates improves the accuracy of US real GDP and GDP deflator predictions. Also, Binner et al. (2005) finds there are strong indications that Divisia outperforms simple-sum aggregates in a non-linear framework when forecasting inflation for the euro whilst the predictive power of the user cost spread for economic recessions in both China and the USA has been investigated recently by Chang et al. (2019).

3 Divisia Monetary Aggregates

From the path-breaking work of Barnett $(1978,1980)$ on microeconomic theory and aggregation theory, we know that the capital stock of money in a given time period is not equal to the monetary service flow (as capital goods do not fully depreciate in a period). The price of these monetary service flows is the opportunity cost, or user cost, of holding a particular monetary asset for that period. The User Cost Price then is the present value of however much interest an agent is foregoing because they are holding an asset, given that there exists a pure investment asset which provides a higher return and no monetary services. The User Cost Price is calculated thus:

$$
\begin{equation*}
\pi_{i t}=\left(R_{t}-\gamma_{i t}\right) /\left(1+R_{t}\right) \tag{1}
\end{equation*}
$$

where $\gamma_{i t}$ is the return on asset i and R_{t} return on the pure investment or benchmark asset. A key feature of the User Cost Price is that it can never be negative and this is particularly relevant for our results (see section 7).

With the User Cost Price precisely defined, an aggregate for the monetary service flows can be elaborated which will track these flows correctly. For this purpose a Divisia index is used. For the construction of Divisia indexes, let the share weight for each individual asset i over time, $t, s_{i t}$, be defined as

$$
\begin{equation*}
s_{i t}=\pi_{i t} m_{i t} / \sum \pi_{j t} m_{j t} \tag{2}
\end{equation*}
$$

where $m_{i t}$ is the nominal monetary asset i at time t and $s_{i t}$ is defined as $s_{i t}=1 / 2\left(s_{i t}+s_{i t-1}\right)$. And so, the Divisia monetary index is

$$
\begin{equation*}
\ln M_{t}-\ln M_{t-1}=\sum_{t=1}^{n} s_{i t}\left(\ln m_{i t}-\ln m_{i t-1}\right) \tag{3}
\end{equation*}
$$

Here M_{t} is the quantity index. From the above equation, one can see that the growth rate of the index is a weighted sum each monetary asset i. Each i has a share in the User Cost and this is precisely its corresponding weight in the Divisia index. Finally, the accompanying User Cost Price index Π is defined as

$$
\begin{equation*}
\ln \Pi_{t}-\ln \Pi_{t-1}=\sum_{t=1}^{n} s_{i t}\left(\ln \pi_{i t}-\ln \pi_{i t-1}\right) \tag{4}
\end{equation*}
$$

The idea here is that agents substitute toward holding the monetary assets which have the lowest relative user costs whenever there is a change in the own interest rate of another component monetary asset. This reflects how agents take into account opportunity costs in their decision process. The Divisia monetary aggregates and associated user cost price indices internalize the liquidity preferences of the asset holders in the construction of the index via the share weights, $s_{i t}$, of the assets held.

4 China's Financial Markets

Financial markets are eager for any signal of monetary policy from the People's Bank of China (PBC) and the importance of effective monetary policy communication will only increase as China continues to liberalize its financial system and open its economy.The implementation of China's "Open-door policy" has achieved rapid economic growth for three decades, please see Bohnet et al. (1993) for details. The capital inflow through foreign direct investment, together with an abundance of cheap labor together helped China and the whole world enjoy low price goods for over twenty years. Prior to 1994, China applied a dual-core pegged foreign exchange rate domestically and internationally in order to protect its fragile financial system. Since 1994, the Chinese yuan has operated with a currency peg in order to keep its value low compared to other countries. The effect on trade is that Chinese exports are cheaper and, therefore, more attractive when compared to those of other nations. This policy encourages the global marketplace to buy its goods to ensure economic prosperity.

More recently, China's exchange rate regime has undergone gradual reform. After announcing the move away from a fixed exchange rate in July 2005, China began taking regular steps towards a more flexible currency, while exchange rate stability continued to play an important role. The PBC announced that China was "moving into a managed floating exchange rate regime based on market supply and demand with reference to a basket of currencies." The basket of currencies was not specified, however, and the regime in operation was one with a continued tight link to the U.S. dollar. Specifically, there would be a daily rate (the central parity rate, or the 'fix') announced before the start of the trading day that would form the midpoint of the band within which the CYN/USD rate could fluctuate on that day. The renminbi has therefore become more flexible over time but is still carefully managed, and depth and liquidity in the onshore FX market is relatively low compared to other countries with de jure floating currencies. Allowing a greater role for market forces within the existing regime by making central parity formation for the daily trading band (the 'fix') mechanical and transparent is critical for greater two-way flexibility of the exchange rate. The use
of FX intervention should be guided by the need to limit excessive volatility; and capital flow management measures (CFMs) should not be modulated to help manage the exchange rate.

Going forwards, further steps to develop the FX market, improve FX risk management, and the development of an alternate monetary policy anchor by continuing to modernize the monetary policy framework are recommended. An overview of the evolution of China's exchange rate regime from 2005 onward, including details of the unique constraints faced by China on its path to a floating exchange rate is provided by Das (2019). China's unique institutional setup and the impact of the PBC's main communication channels on financial markets is provided by McMahon et al. (2018). This detailed analysis of China's monetary policy framework recommends that providing timely information in one place (in Chinese and English), expanding PBC forecasting resources and capacity, and holding regular press conferences would not only be helpful for monetary policy, but also increase the attractiveness of China's capital markets and advance renminbi internationalization.

5 Negative Interest Rates

Negative interest rate policy (NIRP) has become a standard instrument in the ECB's toolkit over time but remains controversial, both in central banking circles and academia. Central banks impose the drastic measure when they fear their national economies are slipping into a deflationary spiral, in which there is no spending, and hence, dropping prices, no profits, and no growth. Most central banks that adopted NIRP were primarily motivated by the stabilization of inflation expectations as NIRP aims to increase the supply of credit by taxing banks' excess reserves at the central bank and thereby support growth, Jobst and Lin (2016). NIRP complements asset purchases and forward guidance that has been implemented since the Global Financial Crisis to ensure that the economy is sufficiently stimulated. In spite of these positive effects on the operation of monetary policy, NIRP has often been criticized for its potential side effects, particularly on the banking sector. A theoretical model that explains how policy rates transmit to banks' supply of credit, is provided by Bittner et al. (2020). A useful summary of existing work on the impact of negative rates on banks' lending and securities portfolios, and the consequences for the real economy are provided in Heider et al. (2021).

Sweden's central bank was the first to deploy negative interest rates in July 2009 when the Riksbank cut its overnight deposit rate to -0.25%. The European Central Bank (ECB) followed suit in June 2014 when it lowered its deposit rate to -0.1%. As experience with negative interest rates was scant, the ECB proceeded cautiously over time, lowering the deposit facility rate (DFR) in small increments of 10 basis points, until it reached -0.5% in September 2019. The ECB turned to negative interest rates to lower the value of the euro. Low or negative yields on European debt will deter foreign investors, thus weakening demand for the euro. Empirical evidence regarding the impact of NIRP on exchange rates is scant, although a survey on recent developments in the monetary policy transmission mechanism in NIRP adopted countries by Ball et al. (2016) concludes that exchange rate appreciation pressures are generally reduced and that the policy has been associated with an improvement in overall financial conditions along with a modest expansion of credit in the euro area. Arteta et al. (2016) suggest that the impact of NIRP on exchange rates has been more varied with currencies depreciating on average against the U.S. dollar and on trade-weighted-terms, except for the Japanese yen and the Swiss franc.

The theoretical challenge is to integrate the role of liquid assets into a model of bank lending. Holding liquid assets and trading them in interbank markets is essential for lending because it allows banks to measure
and manage asset liquidity. As stated in Section 3 above, a sophisticated Divisia index measure, under fairly general assumptions, represents the ideal aggregate measure of "liquidity services" available in the economy and is therefore potentially of great interest to monetary policy-makers aiming at understanding the effects of monetary policy on the aggregate economy, Keating et al. (2019). We follow Chang et al. (2019) and take the view that Divisia method of pricing incorporates the segmented markets hypothesis by treating assets of different degrees of liquidity and different maturities as imperfect substitutes. Indeed, one of the main contributions of the Divisia monetary aggregate literature is to uncover and acknowledge the failings of the simple sum approach that treats all monetary assets as perfect substitutes. Furthermore, the expectations of the interest rates in this case can be put aside as all constituent component assets are treated as imperfect substitutes based on their liquidity and store of value pricing at the present time period, although a more complex expectations hypothesis could be developed as demonstrated in the monetary asset case in Barnett and Wu (2005). The gains in predictive accuracy by incorporating a user cost index in macro forecasting models, including exchange rate forecasting models, is clear; user cost indices provide a unique interpretation for the link between the yield spread and recessions

6 The Models

Hooper and Morton (1982) developed an exchange rate forecasting model which was based on previous models such as the Dornbusch (1976) Sticky Price model and the Flexible Price Monetary model by Frenkel (1976). The HM model includes the Current Account (CA) as an explanatory variable (its principal innovation). Thus, we have the following,

$$
\begin{align*}
e_{t}= & \beta_{0}+\beta_{1}\left(m_{t}-m_{t}^{*}\right)+\beta_{2}\left(y_{t}-y_{t}^{*}\right) \tag{5}\\
& +\beta_{3}\left(i_{t}-i t^{*}\right)+\beta_{4}\left(p_{t}-p_{t}^{*}\right)+\beta_{5} c a_{t}+\beta_{6} c a t^{*}+\nu_{t}
\end{align*}
$$

where e_{t} is the exchange rate and m_{t} and m_{t}^{*}, y_{t} and y_{t}^{*}, i_{t} and i_{t}^{*}, and $p_{t}, p_{t}^{*}, c a_{t}$ and $c a_{t}^{*}$ are, respectively, domestic and foreign money supply, domestic and foreign output, domestic and foreign interest rates, domestic and foreign current long-run expected rates of inflation, and domestic and foreign current account balances at time t.

The model specification involves an error-correction restriction and so as to avoid short-run dynamics. What this means is that the variation from the exchange rate is a correction of the deviation from a long-run equilibrium in the previous period. Taking the natural logarithms of all variables except the current account variable, the equation becomes the following,

$$
\begin{align*}
\ln e_{t+h}-\ln e_{t}= & \alpha_{0}+\alpha_{1}\left(\ln e_{t}-\beta_{0}\right. \\
& -\beta_{1} \ln \tilde{m}_{t}-\beta_{2} \ln \tilde{y_{t}}-\beta_{3} \ln \tilde{i_{t}}-\beta_{4} \ln \tilde{p}_{t} \tag{6}\\
& \left.-\beta_{5} c a_{t}-\beta_{6} c a t^{*}\right)+\epsilon_{t}
\end{align*}
$$

Here $\tilde{m}_{t}, \tilde{y}_{t}, \tilde{i_{t}}$, and \tilde{p}_{t} are domestic to foreign relative money supply, output and short-term interest rates, respectively, and h is the forecasting horizon. We should note that we have replaced long-run expected rates of inflation with the only proxy available, relative prices. We will explain this choice in the next section.

Notice that by setting $\beta_{5}=\beta_{6}=0$, the model is reduced to the Sticky Price model; $\beta_{4}=\beta_{5}=\beta_{6}=0$ results in the Flexible Price Monetary model; and, $\beta_{1}=\beta_{2}=\beta_{4}=\beta_{5}=\beta_{6}=0$ is Uncovered Interest-Rate Parity.

The BVAR model with a Minnesota prior was introduced in the aforementioned Litterman (1986) and, as previously described, has been widely used in forecasting. If the model is as follows

$$
\begin{equation*}
y=\left(I_{m} \otimes X\right) \alpha+\epsilon, \quad \epsilon \sim\left(0, \Sigma_{\epsilon} \otimes I_{T}\right) \tag{7}
\end{equation*}
$$

then y and ϵ are $m T \times 1$ vectors of dependent variables and errors, respectively, and where m is the number of variables and T, the time periods. I_{m} is the identity matrix, X is the matrix of independent variables and α is a $m l \times 1$ vector where l is the number of lags. More specifically, $\alpha=\bar{\alpha}+\xi_{\alpha}$ with $\xi_{\alpha} \sim N\left(0, \Sigma_{\alpha}\right)$, where in the Minnesota prior $\bar{\alpha}=0$ except $\bar{\alpha}_{1 i}=1, i=1, \ldots, m, \Sigma_{\alpha}$ is diagonal and each element $\sigma_{i j, l}$ (equation i, variable j, and lag l) is as follows

$$
\begin{equation*}
\sigma_{i j, l}=\phi_{0} / h(l), \quad i=j \tag{8}
\end{equation*}
$$

If j is endogenous, then

$$
\begin{equation*}
\sigma_{i j, l}=\phi_{0} \times \phi_{1} / h(l) \times\left(\sigma_{j} / \sigma_{i}\right)^{2}, \quad i \neq j \tag{9}
\end{equation*}
$$

And if j is exogenous, then

$$
\begin{equation*}
\sigma_{i j, l}=\phi_{0} \times \phi_{2} \tag{10}
\end{equation*}
$$

In this case $\phi_{0}, \phi_{1}, \phi_{2},\left(\sigma_{j} / \sigma_{i}\right)^{2}$ and $h(l)$ are, respectively, hyperparameters, a scaling factor, and a function of lags l. Note that ϕ_{0} measures the tightness of the first lag's variance, ϕ_{1} is the relative tightness of any other variables, and ϕ_{2} is the relative tightness of exogenous variables. Finally, $h(l)$ is a measure of the relative tightness of the variance of the lags.

The error correction model follows a similar process to the one laid out for the SP model, using the same variables. The number of lags is 5 for the EUR/USD and USD/CNY and 6 from the EUR/CNY, the averages of three information criteria.

Every one of the above models will be estimated twice: once with their standard variables, and a second time with M3 monetary aggregates replaced by the Divisia index and the reference interest rate replaced by the User Cost Price. Here, the use of the User Cost instead of the interest rate follows Barnett et al. (1984). There are a total of ten models whose forecasting performance will be evaluated. All data are in logs, except interest rates and the User Cost Prices.

6.1 Performance Evaluation

In this study we use a rolling regression in order to produce the predicted forecasts. We first pick an in-sample period for which the models are first estimated and then exchange rates are forecast for the out-of-sample period. The sample is then updated to the following period until there are no more out-of-sample observations. In order to pick the in-sample and out-of-sample periods for the whole sample (including negative rates), we chose the date at which interest rates become negative, i.e. June 2014, for the exchange rates involving the euro. For the USD/CYN, we picked January, 2015 as the start of the out-of-sample period, as that signified the end of the 2005-2015 period of exchange rate regime reform. For the pre-negative rates data, the out-of-sample period begins after the end of the Great Recession.

The performance of each model is evaluated by comparing each one to a benchmark model which in this case is the driftless random-walk.

For the first evaluation method we use the root mean square error (RMSE) of each of the models and divide it by the RMSE of the random-walk. A ratio of less than one indicates that the model is performing
better than the random-walk and vice-versa.
The second method is the statistic produced by Diebold and Mariano (1995), which allows for the comparison of forecasts in terms of whether the difference between two forecasts for the same forecasting period is statistically significant and whether or not the improvement is statistically significant (one forecast being "better" than another).

7 Data and Results

7.1 Data

The data we utilize are quarterly series of the different variables in the models from 2002Q1 to 2018Q4. We obtained Divisia M3 monetary aggregates and user cost prices for the Euro Area (including the first 12 member countries), US, and China from the Bruegel Institut¢ ${ }^{11}$. Center for Financial Stability ${ }^{2}$ and The Center for Financial Development and Stability ${ }^{3}$ websites, respectively. In terms of our independent variables, we use 3-month Treasury bill rates for the short-term interest rates, quarterly GDP for output, CPI as the price level, and the current account balances. We use traditional M3 monetary aggregates to compare with our theoretically superior Divisia aggregates. All of these were retrieved from the Federal Reserve Economic Data bank found in the Federal Reserve Bank of St. Louis' website 4

7.2 Results

Figures 1 and 2 in the annex show the forecasts of the BVARD and UIPUC models against the random walk forecasts and the actual exchange rates for the out of sample period $3,6,9,12$ months ahead. Tables 1 and 2 display the RMSE ratios of the different models under consideration without Divisia and with Divisia and the User Cost Price for every forecasting period, the full sample and the sample without negative rates, respectively. What we notice is that, when we compare both tables, the only two models that consistently beat the random walk are the UIPUC and BVARD for the USD/EUR exchange rate. That is to say, all the other models' improvements are either sensitive to in-sample/out-of-sample period changes or show no improvements at all. The one exception appears to be BVARD for the EUR/CNY where the model with Divisia and the User Cost Price beats the random walk with and without negative rates, especially in the short-run. The more moderate forecasting results for USD/CYN and EUR/CYN can be explained by the "managed foreign exchange rate" regime for the Chinese RMB through monetary policy during the foreign exchange market regime reform. In other words, the improvements over the random walk appear only in the context of a floating exchange rate regime. It is also worth noting that UIPUC performs so well because the difference in this model is not between two reference rates but between a weighted basket of returns. In the case of UIP with negative rates, the difference will actually become a sum (of two positive or negative numbers) - the opposite of what happens when we use the User Cost Price which can never be negative by construction. Another point we should mention is that the BVAR with Divisia is the model that behaves as one would expect, considering the literature on Bayesian methods: it has strong forecasting power in the short-run and becomes weaker as we move towards the long-run.

[^0]The DM statistic in Tables 3 and 4 provide supporting evidence for the results found under the RMSE criterion. When comparing the forecasts produced by the models and those produced by the random walk, all models behave similarly to how they performed under the RMSE criterion. For UIPUC for the EUR/USD in the longer forecasting horizons, the DM statistic becomes negative and increasingly so. P-values usually decrease in every period and by the 2-year horizon, the p-value approaches or reaches the 10% significance level. At the 2 and 3 -year horizons it is usually below that threshold. The opposite happens with the BVARD for the USD/EUR and the EUR/CNY. This implies that, again, in these cases, models which include the User Cost Price and Divisia aggregates produce forecasts that provide statistically significant improvements on the random walk forecasts and the standard models' forecasts. Also, as mentioned in the previous section, these improvements can only be observed in the exchange rates affected by negative interest rates in the context of free floating regimes. Otherwise, models (with or without Divisia) do not behave consistently or under-perform consistently.

8 Conclusion

This paper is based on solid theoretical foundations and contributes to the literature as the first work of its kind to examine the role and importance of Divisia monetary aggregates and concomitant user cost price indices as superior monetary policy forecasting tools in a negative interest rate environment. We echo Belongia (2006) that the use of user cost price duals appear to be worthy of further investigation. In particular, the sensitivity of inference to changes in measurement alone goes to the core of empirical monetary research. Conventional practice in empirical work and policy discussions have been to knowingly use index numbers that cannot possibly be meaningful representations of either the aggregate quantity of money or its price. Results presented here provide the first available evidence that Divisia monetary aggregates and their concomitant user cost price indices provide superior information about future forecasts of exchange rates in a negative interest rate environment. This finding also holds for the US China exchange rate, which is managed centrally. This result is important for monetary policymakers and academic researchers around the world, particularly given the recent trend towards monetary policymakers' decision to operate in a negative interest rate environment. The Divisia monetary aggregates and associated user cost price indices internalize the liquidity preferences of the asset holders in the construction of the index via the share weights of the assets held. A final inference to draw is that resources directed towards the construction and dissemination of monetary statistics that meet the same standards applied to other economic aggregates are likely to yield a high return in our understanding of exchange rate forecasting in particular and economic activity more generally. Future work will consider further innovations in the construction of the Divisia index to incorporate more sophisticated measures of the riskiness of the assets, building upon Binner et al. (2018) while further work to understand the information channel of monetary policy following monetary policy shocks is recommended Hoesch et al. (2020).
Table 1: Annex. RMSE Ratios (Full Sample)

Panel A. Hooper-Morton Model RMSE over Random Walk RMSE						
	Quarterly EUR/USD Ratio		Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	HM	HMD	HM	HMD	HM	HMD
1 quarter	1.15478	1.18216	1.05538	1.07073	0.98306	1.00485
2 quarters	1.18824	1.21720	1.08965	1.11423	0.98548	1.02506
3 quarters	1.21131	1.21706	1.06486	1.09073	0.98856	1.06166
4 quarters	1.21403	1.22721	1.02656	1.08095	0.99294	1.11573
6 quarters	1.27698	1.30526	0.98503	1.00352	1.07743	1.26496
8 quarters	1.27922	1.37360	0.97595	0.97220	1.18930	1.47110
12 quarters	1.01244	1.05233	0.70653	0.79511	1.61649	1.86223
Panel B. Sticky Price Monetary Model RMSE over Random Walk RMSE						
Quarterly EUR/USD Ratio Time Horizon SP SPD			Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
			SP	SPD	SP	SPD
1 quarter	1.14907	1.20118	1.02008	1.08749	1.02692	1.01659
2 quarters	1.18519	1.25805	1.00275	1.14261	1.04491	1.03122
3 quarters	1.20969	1.29250	0.92323	1.08395	1.05755	1.04812
4 quarters	1.20331	1.33369	0.86323	1.03652	1.07329	1.10239
6 quarters	1.27322	1.41371	0.83207	0.89969	1.17687	1.25307
8 quarters	1.31429	1.50507	0.74822	0.74303	1.35766	1.50606
12 quarters	1.01219	1.08908	0.65601	0.49146	2.13884	2.12648
Panel C. Flexible Price Monetary Model RMSE over Random Walk RMSE						
Quarterly EUR/USD Ratio			Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	FP	FPD	FP	FPD	FP	FPD
1 quarter	1.08955	1.14115	1.05311	1.13516	1.02327	1.01160
2 quarters	1.10019	1.18503	1.03972	1.18799	1.04906	1.03327
3 quarters	1.09983	1.18284	0.93651	1.09647	1.07286	1.06526
4 quarters	1.07143	1.19878	0.86541	1.03314	1.10116	1.13338
6 quarters	1.11431	1.21480	0.82233	0.90563	1.22389	1.29360
8 quarters	1.12991	1.25118	0.67344	0.71554	1.42539	1.54135
12 quarters	0.85684	0.96771	0.55671	0.41385	2.13406	2.09900

Table 1: Annex. RMSE Ratios (Continued)

Panel D. Uncovered Interest Parity Model RMSE over Random Walk RMSE						
	Quarterly EUR/USD Ratio		Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	UIP	UIPUC	UIP	UIPUC	UIP	UIPUC
1 quarter	1.06473	0.99558	1.09506	1.06225	1.04892	1.04516
2 quarters	1.06618	0.95398	1.15831	1.12390	1.08449	1.05906
3 quarters	1.04716	0.91933	1.14697	1.11713	1.16410	1.09721
4 quarters	1.03291	0.90676	1.12440	1.09801	1.23103	1.12527
6 quarters	1.03354	0.89967	0.94819	0.95994	1.33835	1.15844
8 quarters	1.03188	0.82799	0.83637	0.85267	1.44102	1.19331
12 quarters	0.80787	0.64757	0.52655	0.70845	1.61199	1.18844
Panel E. Bayesian Vector Autoregression RMSE over Random Walk RMSE						
	Quarterly EUR/USD Ratio		Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	BVAR	BVARD	BVAR	BVARD	BVAR	BVARD
1 quarter	1.04407	0.54916	1.08918	0.98758	1.03015	1.04204
2 quarters	1.07401	0.93742	1.12824	0.99009	1.04885	1.05682
3 quarters	1.05377	0.98521	1.08190	0.98996	1.05880	1.06096
4 quarters	1.01364	1.02364	1.03965	0.99335	0.94228	0.96363
6 quarters	0.92489	1.03732	1.10665	0.75972	0.74646	0.82516
8 quarters	1.01270	1.02910	0.98249	1.03850	1.05651	1.20615
12 quarters	1.00774	1.01812	1.16328	1.09868	0.83834	1.86274

Table 2: Annex. RMSE Ratios (W/out Negative Rates)

Panel A. Hooper-Morton Model RMSE over Random Walk RMSE						
	Quarterly EUR/USD Ratio		Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	HM	HMD	HM	HMD	HM	HMD
1 quarter	0.92434	0.99926	1.12076	1.12767	0.72794	0.74062
2 quarters	0.80474	1.05181	1.19166	1.29742	0.60545	0.64119
3 quarters	0.72752	1.11086	1.23004	1.38577	0.54704	0.61586
4 quarters	0.61803	1.11239	1.31869	1.52593	0.44238	0.53150
6 quarters	0.69631	1.59419	1.41764	1.71139	0.31140	0.42953
8 quarters	0.72167	1.86105	1.51426	1.78603	0.21391	0.30494
12 quarters	1.08860	1.84508	1.23119	1.32586	0.14411	0.20044
Panel B. Sticky Price Monetary Model RMSE over Random Walk RMSE						
Quarterly EUR/USD Ratio Time Horizon SP SPD			Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
			SP	SPD	SP	SPD
1 quarter	0.92625	1.06009	1.23298	1.26597	0.67663	0.68077
2 quarters	0.83837	1.14833	1.39162	1.48124	0.56486	0.57200
3 quarters	0.79795	1.23481	1.43166	1.54206	0.49940	0.50730
4 quarters	0.65749	1.25684	1.49251	1.68579	0.41834	0.43688
6 quarters	0.72019	1.83673	1.60080	1.86142	0.29856	0.34992
8 quarters	0.83810	2.07640	1.63473	1.86210	0.21101	0.25924
12 quarters	1.24603	1.98105	1.29748	1.37265	0.08151	0.21832
Panel C. Flexible Price Monetary Model RMSE over Random Walk RMSE						
	Quarterly EUR/USD Ratio		Quarterly EUR/CNY Ratio		Quarterly USD/CNY Ratio	
Time Horizon	FP	FPD	FP	FPD	FP	FPD
1 quarter	0.91977	1.12106	1.19491	1.21359	0.70104	0.69328
2 quarters	0.81436	1.25485	1.36808	1.45019	0.57844	0.56899
3 quarters	0.77264	1.39750	1.45161	1.55190	0.49747	0.49457
4 quarters	0.59926	1.47436	1.51992	1.70846	0.40562	0.39266
6 quarters	0.64261	2.26233	1.61788	1.88977	0.26236	0.26143
8 quarters	0.87746	2.58602	1.64600	1.87995	0.15763	0.19674
12 quarters	1.24750	2.45541	1.30103	1.39501	0.21565	0.27810

Table 2: Annex. RMSE Ratios (Continued)

Table 3: Annex. Diebold-Mariano Test (Full Sample)

Panel C. Flexible Price vs. Flexible Price Divisia												
Quarterly EUR/USD Ratio					Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	FP DM	FP p-val	FPD DM stat	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { FP DM } \\ & \text { stat } \end{aligned}$	FP p-val	FPD DM stat	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { FP DM } \\ & \text { stat } \end{aligned}$	FP p-val	FPD DM stat	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$
1 quarter	1.05825	0.85503	1.28153	0.90000	0.81757	0.79320	1.45818	0.92760	0.41090	0.65943	0.04826	0.51925
2 quarters	0.99477	0.84008	1.64102	0.94960	0.49253	0.68883	1.61354	0.94669	0.82801	0.79617	0.40012	0.65546
3 quarters	0.81382	0.79213	1.66741	0.95228	-0.67501	0.24983	0.84688	0.80147	0.71810	0.76365	0.43634	0.66870
4 quarters	0.61317	0.73012	1.62370	0.94778	-1.15405	0.12424	0.26265	0.60359	0.61410	0.73042	0.67813	0.75115
6 quarters	0.76593	0.77814	1.65757	0.95130	-1.29113	0.09833	-0.77783	0.21834	1.23771	0.89209	1.45537	0.92722
8 quarters	0.65593	0.74406	1.83469	0.966728	-1.94064	0.02615	-1.68113	0.04637	2.18832	0.98568	3.32946	0.99956
12 quarters	-1.29898	0.09698	-0.35665	0.36068	-3.76556	0.00008	-4.57528	0.000002	5.57997	1	5.60950	1

Table 3: Annex. Diebold-Mariano Test (Continued)

Panel D. Uncovered Interest Parity vs. Uncovered Interest Parity User Costs												
	Quarterly EUR/USD Ratio				Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	$\begin{aligned} & \text { UIP DM } \\ & \text { stat } \end{aligned}$	$\begin{array}{ll} \hline \text { UIP } & \text { p- } \\ \text { val } \end{array}$	UIPUC DM stat	$\begin{aligned} & \hline \text { UIPUC } \\ & \text { p-val } \end{aligned}$	$\begin{aligned} & \text { UIP DM } \\ & \text { stat } \end{aligned}$	$\begin{array}{ll} \hline \text { UIP } & \mathrm{p}- \\ \text { val } \end{array}$	UIPUC DM stat	UIPUC p-val	$\begin{aligned} & \text { UIP DM } \\ & \text { stat } \end{aligned}$	$\begin{array}{ll} \hline \text { UIP } & \text { p- } \\ \text { val } \end{array}$	UIPUC DM stat	UIPUC p-val
1 quarter	0.75452	0.77473	-0.05765	0.47701	1.03684	0.85009	0.84633	0.80132	0.98807	0.83844	1.24687	0.89378
2 quarters	0.76910	0.77908	-0.55962	0.28787	1.58783	0.94384	1.31472	0.90570	1.32846	0.90799	1.27420	0.89870
3 quarters	0.50534	0.69334	-0.79960	0.21197	1.74364	0.95939	1.34434	0.91058	1.73067	0.95824	1.31659	0.90601
4 quarters	0.31907	0.62516	-0.81883	0.20644	1.60640	0.94591	1.12354	0.86940	1.73678	0.95879	1.15737	0.87644
6 quarters	0.27481	0.60827	-0.72203	0.23514	-0.79626	0.21294	-0.60830	0.27149	1.79452	0.96363	1.22200	0.88915
8 quarters	0.23321	0.59220	-1.14631	0.12583	-1.48729	0.06847	-1.47577	0.07000	2.37949	0.99133	2.28210	0.98876
12 quarters	-1.40240	0.08040	-1.90600	0.02832	-4.28897	0.00001	-4.34558	0.00001	6.33747	1	4.11702	0.99998
Panel E. Bayesian Vector Autoregression vs. Bayesian Vector Autoregression Divisia												
Quarterly EUR/USD Ratio					Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	BVAR DM stat	BVAR p-val	BVARD DM stat	BVARD p-val	BVAR DM stat	BVAR p-val	BVARD DM stat	BVARD p-val	BVAR DM stat	BVAR p-val	BVARD DM stat	BVARD p-val
1 quarter	1.24410	0.89327	-2.18260	0.01453	2.12625	0.98326	-0.94207	0.17308	0.73479	0.76877	0.91306	0.81939
2 quarters	1.67960	0.95348	-0.95826	0.16897	2.34526	0.99049	-0.54646	0.29238	0.98971	0.83884	0.96308	0.83225
3 quarters	1.49682	0.93278	-0.38488	0.35016	2.07342	0.98093	-0.54856	0.29165	0.96801	0.83348	0.84410	0.80069
4 quarters	0.40840	0.65851	0.70221	0.75873	1.93035	0.97322	-0.41061	0.34068	-0.07746	0.46913	-0.10947	0.45641
6 quarters	-1.80845	0.03527	0.93571	0.82529	-2.01742	0.02183	0.02925	0.51167	-1.86141	0.03134	-1.40051	0.08068
8 quarters	0.45097	0.67399	0.78989	0.78520	-0.22562	0.41075	0.51576	0.69699	0.44809	0.67295	1.02530	0.84739
12 quarters	0.40733	0.65812	0.41820	0.66210	1.27720	0.89923	0.79214	0.78586	-2.50060	0.00620	4.81887	1.00000

Table 4: Annex. Diebold-Mariano Test (W/out Negative Rates)

Panel A. Hooper Morton vs. Hooper Morton with Divisia												
Quarterly EUR/USD Ratio					Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	HM DM stat	$\begin{aligned} & \mathrm{HM} \\ & \mathrm{p} \text {-val } \end{aligned}$	HMD DM stat	$\begin{aligned} & \text { HMD p- } \\ & \text { val } \end{aligned}$	HM DM stat	HM p-val	HMD DM stat	$\begin{aligned} & \text { HMD p- } \\ & \text { val } \end{aligned}$	HM DM stat	HM p-val	HMD DM stat	$\begin{aligned} & \text { HMD p- } \\ & \text { val } \end{aligned}$
1 quarter	-1.05101	0.14663	-0.00596	0.49762	1.32225	0.90696	1.31475	0.90570	-0.82663	0.20422	-0.76626	0.22176
2 quarters	-2.33878	0.00967	0.47394	0.68223	1.48831	0.93167	2.27913	0.98867	-0.64031	0.26099	-0.48205	0.31488
3 quarters	-1.97318	0.02424	0.68143	0.75220	1.76018	0.96081	2.83148	0.99768	-0.43894	0.33035	-0.07511	0.47006
4 quarters	-2.01785	0.03160	0.52998	0.70194	1.97375	0.96576	3.29031	0.99950	-0.26092	0.39789	0.30798	0.62095
6 quarters	-1.77066	0.03831	2.85006	0.99781	2.06265	0.98043	3.55787	0.99981	0.54641	0.70761	1.03158	0.84887
8 quarters	-1.49347	0.06766	2.97941	0.99856	2.25430	0.98791	3.35639	0.99961	1.39033	0.91779	1.89965	0.97126
12 quarters	3.02341	0.99875	3.10483	0.99905	2.37015	0.99111	3.55964	0.99981	2.49233	0.99365	1.60633	0.94590
Panel B. Sticky Price vs. Sticky Price Divisia												
Quarterly EUR/USD Ratio					Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	$\begin{aligned} & \text { SP DM } \\ & \text { stat } \end{aligned}$	SP p-val	SPD DM stat	$\begin{aligned} & \text { SPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { SP DM } \\ & \text { stat } \end{aligned}$	SP p-val	SPD DM stat	$\begin{aligned} & \text { SPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { SP DM } \\ & \text { stat } \end{aligned}$	SP p-val	SPD DM stat	$\begin{array}{ll} \hline \text { SPD } & \mathrm{p}- \\ \text { val } \end{array}$
1 quarter	-0.96480	0.16732	0.46036	0.67737	1.71144	0.95650	1.91478	0.97224	-2.33632	0.00974	-2.23549	0.01269
2 quarter	-2.31604	0.01028	1.11643	0.86788	2.44476	0.99275	2.83261	0.99769	-3.18130	0.00073	-3.06090	0.00110
3 quarter	-1.69604	0.04494	1.22670	0.89003	2.53854	0.99443	3.26569	0.99945	-3.67710	0.00012	-3.57131	0.00018
4 quarter	-1.82733	0.03383	1.11442	0.86745	2.89649	0.99811	3.87530	0.99995	-4.61095	0.000002	-4.46768	0.000004
6 quarter	-1.69755	0.04480	3.45535	0.99973	3.78456	0.99992	4.19430	0.99999	-6.42245	0	-6.42924	0
8 quarter	-0.92780	0.17676	3.66973	0.99988	4.00098	0.99997	3.72703	0.99990	-7.91021	0	-8.35566	0
12 quarter	1.57628	0.94252	2.95165	0.99842	3.94176	0.99996	4.82948	1.00000	11.38533	0	-9.74436	0
Panel C. Flexible Price vs. Flexible Price Divisia												
	Quarterly EUR/USD Ratio				Quarterly EUR/CNY Ratio				Quarterly USD/CNY Ratio			
Time Horizon	$\begin{aligned} & \text { FP DM } \\ & \text { stat } \end{aligned}$	FP p-val	$\begin{aligned} & \text { FPD } \\ & \text { DM stat } \end{aligned}$	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { FP DM } \\ & \text { stat } \end{aligned}$	FP p-val	$\begin{aligned} & \text { FPD } \\ & \text { DM stat } \end{aligned}$	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$	$\begin{aligned} & \text { FP DM } \\ & \text { stat } \end{aligned}$	FP p-val	FPD DM stat	$\begin{aligned} & \text { FPD p- } \\ & \text { val } \end{aligned}$
1 quarter	-0.92218	0.17822	0.75098	0.77367	1.71373	0.95671	1.81235	0.96503	-2.16199	0.01531	-2.16718	0.01511
2 quarter	-2.03222	0.02107	1.58569	0.94360	2.62169	0.99563	2.92315	0.99827	-3.04877	0.00115	-3.00533	0.00133
3 quarter	-1.82237	0.03420	1.82076	0.96568	2.78481	0.99732	3.44367	0.99971	-3.62995	0.00014	-3.33408	0.00043
4 quarter	-1.88567	0.02967	1.97699	0.97598	3.34101	0.99958	4.27723	0.99999	-4.58597	0.000002	-4.16834	0.00002
6 quarter	-1.91818	0.02754	4.14073	0.99998	4.57129	1.00000	4.47460	1.00000	-6.21818	0	-5.74837	0
8 quarter	-0.60657	0.27207	4.15835	0.99998	4.49366	1.00000	3.75127	0.99991	-7.71327	0	-7.71146	0
12 quarter	1.54710	0.93908	4.03818	0.99997	3.83099	0.99994	4.50312	1.00000	-9.63686	0	-8.00726	0

Table 4: Annex. Diebold-Mariano Test (Continued)

9 Annex: Actual vs Forecasted values, for 3 months, 6 months 9 months and 12 months ahead

References

Arteta, C., Kose, M. A., Stocker, M., and Taskin, T. (2016). Negative interest rate policies: Sources and implications.

Balassa, B. (1964). The purchasing-power parity doctrine: a reappraisal. Journal of Political Economy, 72(6):584-596.

Ball, L., Gagnon, J., Honohan, P., and Krogstrup, S. (2016). What else can central banks do? ICMB International Center for Monetary and Banking Studies.

Banbura, M., Giannone, D., and Reichlin, L. (2007). Bayesian vars with large panels.
Barnett, W. A. (1978). The user cost of money. Economics letters, 1(2):145-149.
Barnett, W. A. (1980). Economic monetary aggregates: An application of aggregation and index number theory. Journal of Econometrics, 14:11-48.

Barnett, W. A. and Binner, J. M. (2004). Functional structure and approximation in econometrics. Emerald Group Publishing Limited.

Barnett, W. A. and Kwag, C. (2006). Exchange rate determination from monetary fundamentals: an aggregation theoretic approach. Frontiers in Finance and Economics, page P4.

Barnett, W. A., Offenbacher, E. K., and Spindt, P. A. (1984). The new divisia monetary aggregates. Journal of Political Economy, 92(6):1049-1085.

Barnett, W. A. and Serletis, A. (2000). The theory of monetary aggregation. Emerald Group Publishing Limited.

Barnett, W. A. and Wu, S. (2005). On user costs of risky monetary assets. Annals of Finance, 1(1):35-50.
Belongia, M. T. (2006). The neglected price dual of monetary quantity aggregates. Money, Measurement and Computation. New York: Palgrave Macmillan.

Binner, J. M., Bissoondeeal, R. K., Elger, T., Gazely, A. M., and Mullineux, A. W. (2005). A comparison of linear forecasting models and neural networks: an application to euro inflation and euro divisia. Applied Economics, 37(6):665-680.

Binner, J. M., Chaudhry, S., Kelly, L., and Swofford, J. L. (2018). "risky" monetary aggregates for the uk and us. Journal of International Money and Finance, 89:127-138.

Bittner, C., Bonfim, D., Heider, F., Saidi, F., Schepens, G., and Soares, C. (2020). Why so negative? the effect of monetary policy on bank credit supply across the euro area. Unpublished working paper.

Bohnet, A., Hong, Z., and Müller, F. (1993). China's open-door policy and its significance for transformation of the economic system. Intereconomics, 28(4):191-197.

Chang, D., Mattson, R. S., and Tang, B. (2019). The predictive power of the user cost spread for economic recession in china and the us. International Journal of Financial Studies, 7(2):34.

Cheung, Y.-W., Chinn, M. D., Pascual, A. G., and Zhang, Y. (2019). Exchange rate prediction redux: new models, new data, new currencies. Journal of International Money and Finance, 95:332-362.

Das, S. (2019). China's evolving exchange rate regime. IMF Working Paper.
Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business © Economic statistics, 13(3):253-263.

Dornbusch, R. (1976). Expectations and exchange rate dynamics. Journal of Political Economy, 84(6):11611176.

Edge, R. M., Kiley, M. T., and Laforte, J.-P. (2010). A comparison of forecast performance between federal reserve staff forecasts, simple reduced-form models, and a dsge model. Journal of Applied Econometrics, $25(4): 720-754$.

Faust, J., Rogers, J. H., and Wright, J. H. (2003). Exchange rate forecasting: the errors we've really made. Journal of International Economics, 60(1):35-59.

Frankel, J. A. (1979). On the mark: A theory of floating exchange rates based on real interest differentials. The American Economic Review, 69(4):610-622.

Frenkel, J. A. (1976). A monetary approach to the exchange rate: doctrinal aspects and empirical evidence. The Scandinavian Journal of economics, pages 200-224.

Ghosh, T. and Bhadury, S. (2018). Money's causal role in exchange rate: Do divisia monetary aggregates explain more? International Review of Economics ξ^{3} Finance.

Heider, F., Saidi, F., and Schepens, G. (2021). Banks and negative interest rates.
Hoesch, L., Rossi, B., and Sekhposyan, T. (2020). Has the information channel of monetary policy disappeared? revisiting the empirical evidence.

Hooper, P. and Morton, J. (1982). Fluctuations in the dollar: A model of nominal and real exchange rate determination. Journal of international Money and Finance, 1:39-56.

Jobst, A. and Lin, H. (2016). Negative interest rate policy (NIRP): implications for monetary transmission and bank profitability in the euro area. International Monetary Fund.

Keating, J. W., Kelly, L. J., Smith, A. L., and Valcarcel, V. J. (2019). A model of monetary policy shocks for financial crises and normal conditions. Journal of Money, Credit and Banking, 51(1):227-259.

Lace, N., Mačerinskienė, I., and Balčiūnas, A. (2015). Determining the eur/usd exchange rate with us and german government bond yields in the post-crisis period. Intellectual Economics, 9(2):150-155.

Litterman, R. B. (1986). Forecasting with bayesian vector autoregressions-five years of experience. Journal of Business \mathcal{G} Economic Statistics, 4(1):25-38.

Lothian, J. R. and Wu, L. (2011). Uncovered interest-rate parity over the past two centuries. Journal of International Money and Finance, 30(3):448-473.

Mark, N. C. (1995). Exchange rates and fundamentals: Evidence on long-horizon predictability. The American Economic Review, pages 201-218.

McMahon, M., Schipke, M. A., and Li, X. (2018). China's monetary policy communication: Frameworks, impact, and recommendations. International Monetary Fund.

Meese, R. A. and Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of international economics, 14(1-2):3-24.

Reimers, H.-E. et al. (2002). Analysing divisia aggregates for the euro area. Technical report, Discussion paper Series 1/Volkswirtschaftliches Forschungszentrum der Deutschen Bundesbank.

Sarantis, N. (2006). On the short-term predictability of exchange rates: A bvar time-varying parameters approach. Journal of Banking \& Finance, 30(8):2257-2279.

Schunk, D. L. (2001). The relative forecasting performance of the divisia and simple sum monetary aggregates. Journal of Money, Credit and Banking, pages 272-283.

Schüssler, R., Beckmann, J., Koop, G., and Korobilis, D. (2018). Exchange rate predictability and dynamic bayesian learning.

Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of Econometrics, 146(2):329-341.

[^0]: ${ }^{1}$ https://www.bruegel.org/publications/datasets/divisia-monetary-aggregates-for-the-euro-area/
 ${ }^{2}$ http://www.centerforfinancialstability.org/
 ${ }^{3}$ http://cfds.henuecon.education/index.php/data/chinese-divisa-data
 ${ }^{4}$ fred.stlouisfed.org

